Math, asked by himanshu2829, 2 months ago

if a=√3+2 then find value of a-1/a​

Answers

Answered by srigowribudidha0
48

Step-by-step explanation:

if a=√3+2

thena-1/a

=√3+2-1/√3+2

=√3-1/√3+2

Answered by Sadhana4748
6

Hey friend here is the answer you are looking for

a =  \sqrt{3 }  + 2 \\  \\  \frac{1}{a}  =   \frac{1}{ \sqrt{3} + 2 }  \\

on rationalising the denominator we get :

 \frac{1}{}  =  \frac{1}{ \sqrt{ 3} + 2 } \times  \frac{ \sqrt{3} -  2}{ \sqrt{3}  - 2}   \\

using the identity

 {x}^{2}  -  {y}^{2}  = (x + y)(x - y) \\

we get

  \frac{1}{a}  = \frac{ \sqrt{3}  - 2}{ { (\sqrt{3}) }^{2}  - ( {2)}^{2} }  \\  \frac{ \sqrt{3}  - 2}{3 - 4}  \\   \frac{ \sqrt{3} - 2 }{ - 1}  \\   \frac{ - (2 -  \sqrt{3}) }{ - 1}  \:  \:  \:  \:  \:  \:  \:cut  \: the \: subtract \: sign \\ \frac{1}{a}  =  2 -  \sqrt{3}

by putting the values..

a -  \frac{1}{a}  \\  ( \sqrt{3}  + 2) - (2 -  \sqrt{3} ) \\  \sqrt{3}  + 2 - 2 +  \sqrt{3}  \\ 2 \sqrt{3}

here is your answer...

hope it will help you..

Similar questions