Math, asked by 2201401064, 7 months ago

if a=√3+√2 then prove that a^2+1/a^2=10

Answers

Answered by prince5132
10

GIVEN :-

  • a = √3 + √2
  • a² + 1/a² = 10

TO PROVE :-

  • a² + 1/a² = 10

SOLUTION :-

 \\   :  \implies \tt \: a =  \sqrt{3 }  +  \sqrt{2}  \\  \\

 \red \bigstar \:  \blue{ \tt \: Squaring \:  both \:  sides} \\  \\

 :  \implies \tt (a) ^{2}  =  \bigg( \sqrt{3 } +  \sqrt{2}   \bigg) ^{2}  \\  \\

 \red \bigstar \blue{ \tt \: using \: identity    :  -  \: (a + b) ^{2} = a ^{2} +b ^{2} +   2ab  } \\  \\

 \tt   : \implies \: a ^{2}   =  \big( \sqrt{3}  \big) ^{2}  +  \big( \sqrt{2}  \big) ^{2}  + 2 \times  \sqrt{3}  \times  \sqrt{2}  \\  \\

 :  \implies \tt a ^{2}  = 3 + 2 + 2 \sqrt{6}  \\  \\

 :  \implies  \boxed{ \red{\tt a ^{2}  =5 + 2 \sqrt{6}  }} \\

• Now let's calculate the value of a² + 1/a².

 \\  :  \implies \tt a ^{2}  +  \dfrac{1}{a^{2} }  \\  \\

 \red \bigstar \blue{ \tt  \: \: put \:  \: a ^{2} = 5 + 2 \sqrt{6}  }  \\  \\

 :  \implies \tt 5 + 2 \sqrt{6}  +  \dfrac{1}{5 + 2 \sqrt{6} }  \\  \\

 :  \implies \tt  \dfrac{ \bigg(5 + 2 \sqrt{6} \bigg) \bigg(5 + 2 \sqrt{6} \bigg) + 1  }{5 + 2 \sqrt{6} }  \\  \\

 :  \implies \tt  \dfrac{ \bigg(5 + 2 \sqrt{6}  \bigg) ^{2} + 1 }{5 + 2 \sqrt{6} } \\  \\

  \red \bigstar \blue{ \tt \: using \: identity    :  -  \: (a + b) ^{2} = a ^{2} +b ^{2} +   2ab  } \\  \\

  \tt \:  : \implies  \dfrac{  \bigg \{\big(5 \big) ^{2} +  \big(2 \sqrt{6} \big) ^{2}    + 2 \times 5 \times 2 \sqrt{6}  \bigg \} + 1 }{5 + 2 \sqrt{6} }  \\  \\

 :  \implies \tt \:  \dfrac{ \bigg(25 + 4 \times 6 + 20 \sqrt{6} \bigg) + 1 }{5 + 2 \sqrt{6} }  \\  \\

 :  \implies \tt \:  \dfrac{ \bigg(25 + 24 + 20 \sqrt{6}  \bigg) + 1}{5 + 2 \sqrt{6} }  \\  \\

 :  \implies \tt \:  \dfrac{ 49 + 20 \sqrt{6} + 1 }{5 + 2 \sqrt{6} }  \\  \\

 :  \implies \tt \:  \dfrac{50 + 20 \sqrt{6} }{5 + 2 \sqrt{6} }  \\  \\

  \red \bigstar \blue{ \tt \:By \:  \:  Rationalising   \: \: the  \:  \: denominator \:  } \\  \\

 :  \implies \tt \: \dfrac{ \bigg(50 + 20 \sqrt{6} \bigg) \bigg(5 - 2 \sqrt{6}   \bigg)}{ \bigg(5 + 2 \sqrt{6}  \bigg) \bigg(5 - 2 \sqrt{6}  \bigg)}  \\  \\

\red \bigstar \blue{ \tt \: using \: identity    :  -  \: (a + b) (a - b)= a ^{2}  - b ^{2}  } \\  \\

 \tt \: :   \implies \dfrac{50 \bigg(5 - 2 \sqrt{6}  \bigg) + 20  \sqrt{6} \bigg(5 - 2 \sqrt{6}  \bigg)}{ \bigg(5 \bigg) ^{2} +  \bigg(2 \sqrt{6}  \bigg) ^{2}  }  \\  \\

 :  \implies \tt \:  \dfrac{250 - \cancel{ 100 \sqrt{6}  +100 \sqrt{6}}   - 240}{25 - 4 \times 6}  \\  \\

 :  \implies \tt \:  \dfrac{250 - 240}{25 - 24}  \\  \\

 :  \implies \tt \:  \dfrac{10}{1}  \\  \\

 :  \implies \tt \: \boxed{\tt a ^{2}  +  \dfrac{1}{a^{2} }  = 10} \\ \\

HENCE PROVED ✅

Answered by Anonymous
4

➔ \boxed{ \underline{ \tt  \green{ GIVEN}}}

 \tt↬ \blue{a =  \sqrt{3}  +  \sqrt{2} }

➔ \boxed{ \underline{ \tt  \red{ FIND}}}

 \tt↬ \orange{ {a}^{2}  +  \frac{1}{ {a}^{2} } = 10  }

➔ \boxed{ \underline{ \tt  \pink{ SOLUTION}}}

 \tt⤞ \orange{ {a}^{2}  +  \frac{1}{ {a}^{2} } = 10  }......(i)

 \tt⤞a =  \sqrt{3}  +  \sqrt{2}

 \tt \red{both \: side \: squaring}

 \tt⤞ {a}^{2} =   {( \sqrt{3}  +  \sqrt{2}) }^{2}

 \tt by \:  {(a + b)}^{2}  =  {a}^{2}  + 2(a)(b) +  {b}^{2}  \: we \: have

 \tt⤞ {a}^{2} =    { \sqrt{3} }^{2}  + 2( \sqrt{3} )( \sqrt{2} ) +  { \sqrt{3} }^{2}

 \tt⤞ {a}^{2} =    3 + 2 \sqrt{6}  +  2

 \tt⤞ {a}^{2}  =  5 + 2 \sqrt{6}

 \tt☄put \: value \: of  \:  {a}^{2}   \: in \: eq(i)

 \tt⤞  {a}^{2}  +  \frac{1}{ {a}^{2} } = 10

 \tt⤞  5 + 2 \sqrt{6}   +  \frac{1}{ 5 + 2 \sqrt{6} } = 10

 \tt take \: L.C.M

 \tt⤞   \frac{(5 + 2 \sqrt{6} )(5 + 2 \sqrt{6}) + 1 }{5 + 2 \sqrt{6} } = 10

 \tt we \: can \: write(5 + 2 \sqrt{6} )(5 + 2 \sqrt{6} ) \:  as  \\  \tt  {(5 + 2 \sqrt{6}) }^{2}  \: so,

\tt⤞   \frac{(5 + 2 \sqrt{6} {)}^{2}  + 1 }{5 + 2 \sqrt{6} } = 10

\tt by \:  using{(a + b)}^{2}  =  {a}^{2}  + 2(a)(b) +  {b}^{2}  \: we \: have

\tt⤞   \frac{ {5}^{2} + 2(5)(2 \sqrt{6} ) +   {(2 \sqrt{6} )}^{2}     + 1 }{5 + 2 \sqrt{6} } = 10

\tt⤞   \frac{ 25+ 20\sqrt{6}  +   24  + 1 }{5 + 2 \sqrt{6} } = 10

\tt⤞   \frac{ 50+ 20\sqrt{6}   }{5 + 2 \sqrt{6} } = 10

 \tt  now \: rationalising \: the \: denominator

\tt⤞   \frac{ 50+ 20\sqrt{6}   }{5 + 2 \sqrt{6} }  \times  \frac{5  -  2 \sqrt{6} }{5  -  2 \sqrt{6} } = 10

 \tt by \: using (a + b)(a - b) =  {a}^{2}  -  {b}^{2}  \\  \tt we \: have

 \tt ⤞ \frac{50(5 - 2 \sqrt{6}) + 20 \sqrt{6}(5 - 2 \sqrt{6} )  }{ {5}^{2}  -   ({2 \sqrt{6}) }^{2}  }  = 10

 \tt ⤞ \frac{250 - 100 \sqrt{6}  + 100 \sqrt{6}  - 240}{25 - 24}  = 10

 \tt ⤞ \frac{250  \cancel{- 100 \sqrt{6}}   \cancel{+ 100 \sqrt{6} } - 240}{25 - 24}  = 10

 \tt ⤞ \frac{250   - 240}{25 - 24}  = 10

 \tt ⤞ \frac{10}{1}  = 10

 \tt ⤞ 10 = 10

 \tt❂L.H.S=R.H.S

 \tt⚝HENCE,    \underline{\underline{PROVED}}

Similar questions