Math, asked by nishu8893, 1 year ago

if a=3+root5upon3-root5 and b=3-root5upon3+root5 find a2-b2​

Answers

Answered by richapariya121pe22ey
1

Step-by-step explanation:

a =  \frac{3 +  \sqrt{5} }{3 -  \sqrt{5} }  \\ b =  \frac{3 -  \sqrt{5} }{3 +  \sqrt{5} }  \\  {a}^{2}  +  {b}^{2}  =  {(\frac{3 +  \sqrt{5} }{3 -  \sqrt{5} })}^{2}  +  {( \frac{3 -  \sqrt{5} }{3 +  \sqrt{5} } )}^{2}  \\  =  \frac{ ( {3 +  \sqrt{5} )}^{2}  {(3 +  \sqrt{5} )}^{2} +  {(3 -  \sqrt{5)} }^{2}   {(3 -  \sqrt{5}) }^{2}  }{ {(3 +  \sqrt{5} )}^{2}  {(3 -  \sqrt{5} )}^{2} }  \\  =  \frac{ {(3 +  \sqrt{5}) }^{4}  +  {(3  -  \sqrt{5} )}^{4} }{(3 +  \sqrt{5} )(3  -  \sqrt{5})(3 +  \sqrt{5}  )(3 -  \sqrt{5}) }  \\  =  \frac{ {(3 +  \sqrt{5}) }^{4}  +  {(3  -   \sqrt{5}) }^{4} }{(9 - 5)(9 - 5)}  \\  = \frac{ {(3 +  \sqrt{5}) }^{4}  +  {(3  -   \sqrt{5}) }^{4} }{(4)(4)}  \\  = \frac{ {(3 +  \sqrt{5}) }^{4}  +  {(3  -  \sqrt{5}) }^{4} }{16}  \\  =  \frac{ {3}^{4} + (4 \times  {3}^{3} \times  \sqrt{5} ) + (6 \times  {3}^{2}  \times  { \sqrt{5} }^{2} ) + (4 \times 3 \times  { \sqrt{5} }^{3}) +  { \sqrt{5} }^{4} +{3}^{4}  -  (4 \times  {3}^{3} \times  \sqrt{5} ) + (6 \times  {3}^{2}  \times  { \sqrt{5} }^{2} )  - (4 \times 3 \times  { \sqrt{5} }^{3}) +  { \sqrt{5} }^{4}   }{16}  \\  =  \frac{ {3}^{4} + (6 \times  {3}^{2}  +  { \sqrt{5} }^{2}) +  { \sqrt{5} }^{4}  +  {3}^{4} + (6 \times  {3}^{2}  +  { \sqrt{5} }^{2}) +  { \sqrt{5} }^{4}  }{16}  \\  =  \frac{(2 \times 81) + (2 \times 180) + (2 \times 25)}{16}  \\  =  \frac{2 \times (81 + 180 + 25)}{16}  \\  =  \frac{2 \times 286}{16}  \\  =  \frac{572}{16}


nishu8893: thanku di
richapariya121pe22ey: You understood?
nishu8893: yes
Similar questions