Math, asked by Nuthanagaddam18, 10 months ago

If A=340° then root of ( 1-sina) - root of (1+sina)= The answer should be 2sinA/2 Plz answer fast

Answers

Answered by alokraj0304
3

Answer:

convert sina to cos(90-a) then put cosa/2=1-2sin²a/4 then solve... u will get ans

Answered by anurag432
0

Answer:

\sqrt{1-sinA} -\sqrt{1+sinA} = sinA/2

Step-by-step explanation:

root of ( 1-sina) - root of (1+sina)= \sqrt{1-sinA} -\sqrt{1+sinA}

=\sqrt{sin^{2}A/2 +cos^{2}A/2 -2sinA/2cosA/2} -\sqrt{sin^{2}A/2 +cos^{2}A/2 +2sinA/2cosA/2}}

=║cosA/2-sinA/2║ -║cosA/2+sinA/2║

Given A=340 then A/2=170

sin(170)=sin(180-10)=sin10

cos(170)=cos(180-10)=-cos10

=║-cos10-sin10║-║-cos10+sin10║

=-sin10

=sin170

=sinA/2

therefore \sqrt{1-sinA} -\sqrt{1+sinA} = sinA/2

Similar questions