Math, asked by tjfkroerhtntm, 16 days ago

If A = 3i -2j +5k and B = 7i -3j +2k, find A×B and direction of the resultant vector

Answers

Answered by SparklingThunder
6

 \large{ \tt{Answer : }}

  \large\tt  \vec{A} = 3 \hat{i} - 2\hat{j} + 5\hat{k}

 \large\tt  \vec{B}= 7 \hat{i} - 3\hat{j} + 2\hat{k}

 \tt \vec{A } \times  \vec{B} = \begin{array}{|l|}\hat{i}  \:  \:  \:  \:  \:  \:  \: \: \hat{j}  \:  \:  \:  \:  \: \: \hat{k} \:  \:   \\ 3\:   \:  - 2  \:  \:  \:  \:  \: \: 5  \\    7\:   \:  - 3  \:  \:  \:  \:  \: \: 2 \end{array}

 \tt \vec{A } \times  \vec{B} =  ( (- 2 \times 2) -( 5 \times  - 3))\hat{i} +   ( (5 \times 7 ) -( 2 \times  3))\hat{j} +  ( (3 \times  - 3 ) -(  - 2 \times  7))\hat{k}

\tt \vec{A } \times  \vec{B} =  (  - 4 -(  - 15))\hat{i} +   ( 35 -6)\hat{j} +  (  - 9 -(  - 14))\hat{k}

\tt \vec{A } \times  \vec{B} =  (  - 4  + 15)\hat{i} +   29\hat{j} +  (  - 9  + 14)\hat{k}

\tt \vec{A } \times  \vec{B} =  11\hat{i} +   29\hat{j} +  5\hat{k}

 \large \tt  \vec{A}. \vec{B}= | A |  |B| \cos \theta

21 + 6 + 10 =(  \sqrt{ {(3)}^{2}  +  { (- 2)}^{2} +  {(5)}^{2}  } )(  \sqrt{ {(7)}^{2} +  { (- 3)}^{2}   +  {(2)}^{2}} ) \ \cos \theta  \\

37=(  \sqrt{ 9 +  4+  25  } )(  \sqrt{ 49+  9  +  4}) \cos \theta \\

37=(  \sqrt{ 38  } )(  \sqrt{ 62}) \cos \theta

  \displaystyle \tt\cos \theta =  \frac{37}{(  \sqrt{ 38  } )(  \sqrt{ 62})}

\displaystyle \tt \theta =  { \cos }^{ - 1}  \frac{37}{(  \sqrt{ 38  } )(  \sqrt{ 62})}

\displaystyle \tt \theta  \approx40 \degree

Similar questions