Math, asked by polpreetha, 1 month ago

if a=4/3-√5,then the value of (a+4/a) is​

Answers

Answered by Anonymous
5

\large\bold{\underline{\underline{Given:-}}}

a =   \frac{4}{3 -  \sqrt{5} } \\

\large\bold{\underline{\underline{To\:find:-}}}

(a +  \frac{4}{a} )...(i)\\

\large\bold{\underline{\underline{Solution:-}}}

Let us first solve for a.

:⟼   \frac{4}{3 -  \sqrt{5} }  \times  \frac{3 +  \sqrt{5} }{3 +  \sqrt{5} }\\

:⟼   \frac{4(3 +  \sqrt{5} )}{ ({3})^{2}  -   ({ \sqrt{5} })^{2} } \\

:⟼   \frac{12 +4  \sqrt{5} }{9 - 5} \\

:⟼   \frac{4(3 +  \sqrt{5} )}{4}\\

:⟼  3 +  \sqrt{5} ...(ii)

Now that we have the value of a, let us solve for   \frac{4}{a}  .

:⟼   \frac{4}{3 +  \sqrt{5} } \\

:⟼   \frac{4}{3 +  \sqrt{5} }  \times  \frac{3 -  \sqrt{5} }{3 -  \sqrt{5} }\\

:⟼   \frac{4(3 -  \sqrt{5} )}{ ({3})^{2} -  ({ \sqrt{5} })^{2}  }\\

:⟼   \frac{12 - 4 \sqrt{5} }{9 - 5} \\

:⟼   \frac{4(3 -  \sqrt{5}) }{4}\\

:⟼  3 -  \sqrt{5} ...(iii)

Substituting eqn.(ii) and eqn.(iii) in eqn.(i) , we have

:⟼  a +  \frac{4}{a}\\

:⟼  3 +  \sqrt{5}  + 3 -  \sqrt{5}

:⟼  (3 + 3) + ( \sqrt{5}  -  \sqrt{5} )

:⟼  9 + 0

:⟼  9

\large\mathfrak{{\pmb{\underline{\red{Tornado77 }}{\red{❦}}}}}

Similar questions