if a(4,3),b(-1,y) and c(3,4) are the vertices of a right triangle abc right angled at a then find the value of y.
Answers
Question:
If A(4,3), B(-1,y) and C(3,4) are the vertices of a right triangle ABC, right angled at A, then find the value of y.
Answer:
First we have to find the lengths of sides of the triangle ABC, i.e., distance between each two points, AB, BC and AC.
AB = √((4 - (- 1))² + (3 - y)²)
AB = √(5² + (3 - y)²)
AB = √(25 + 9 - 6y + y²)
AB = √(y² - 6y + 34)
AB² = y² - 6y + 34
BC = √((- 1 - 3)² + (y - 4)²)
BC = √((- 4)² + (y - 4)²)
BC = √(16 + y² - 8y + 16)
BC = √(y² - 8y + 32)
BC² = y² - 8y + 32
AC = √((4 - 3)² + (3 - 4)²)
AC = √(1² + (-1)²)
AC = √(1 + 1)
AC = √2
AC² = 2
Given that ΔABC is right angled at A. Thus BC is the hypotenuse.
According to Pythagoras' Theorem, AC² can be written as,
AC² = BC² - AB²
2 = (y² - 8y + 32) - (y² - 6y + 34)
2 = y² - 8y + 32 - y² + 6y - 34
2 = - 2y - 2
- 1 × - 2 = - 1 (2y + 2)
- 2 = 2y + 2
- 4 = 2y
- 2 = y