Math, asked by Sujathathumpiri, 6 months ago

If A=[4136]A=[4316]  then A−1=
matrices​

Answers

Answered by MaheswariS
0

\underline{\textbf{Given:}}

\mathsf{A=\left(\begin{array}{cc}4&1\\3&6\end{array}\right)}

\underline{\textbf{To find:}}

\mathsf{A^{-1}}

\underline{\textbf{Solution:}}

\mathsf{Consider,}

\mathsf{|A|=\left|\begin{array}{cc}4&1\\3&6\end{array}\right|}

\mathsf{|A|=24-3}

\mathsf{|A|=21\;\neq\;0}

\therefore\mathsf{A^{-1}\;exists}

\mathsf{adj\,A=\left(\begin{array}{cc}6&-1\\-3&4\end{array}\right)}

\mathsf{Now,}

\mathsf{A^{-1}=\dfrac{1}{|A|}\;adj\,A}

\implies\boxed{\mathsf{A^{-1}=\dfrac{1}{21}\left(\begin{array}{cc}6&-1\\-3&4\end{array}\right)}}

\underline{\textbf{Find more:}}

X + y + z = 6, 3x - y + 3z = 10, 5x + 5y - 4z = 3.

[Find A-¹ using adjoint method.]​

https://brainly.in/question/30325696  

Solve be matrix inversion method

x-3y-8z+10=0

3x+y=4

2x+5y+6z=13​

https://brainly.in/question/21075691  

Similar questions