Math, asked by bd721783, 3 months ago

if a=√5+1/√5-1 and b=√5-1/√5+1 find the value of 3a^2+5ab+3b^2/3a^2-5ab+3b^2​

Answers

Answered by yadavritesh098
0

Answer:

If -1<x-5<1 then 1/6 <1/y <1/4 is necessarily true or not? 812 Views · If 3a -(3/a) - 3 = 0, then what is the value of a^3 - (1/a^3) + 2? The given ...

Answered by vinshultyagi
29

\Huge \bf{Given:-}

\bf a=\dfrac{\sqrt{5+1}}{\sqrt{5-1}}

\bf b=\dfrac{\sqrt{5-1}}{\sqrt{5+1}}

\Huge \bf{To\:Find:-}

\bf Value \:of\: \dfrac{3a^2+5ab+3b^2}{3a^2-5ab+3b^2}

\Huge \bf{Solution:-}

\bf Rationalizing\:the \: denominator

\bf a=\dfrac{\sqrt{5+1}}{\sqrt{5-1}}

\bf \implies \dfrac{\sqrt{5+1}}{\sqrt{5-1}}×\dfrac{\sqrt{5+1}}{\sqrt{5+1}}

\bf \implies \dfrac{\sqrt{5+1}^2}{5-1}

\bf \implies \dfrac{(\sqrt{5})^2+(\sqrt{1})^2+(2×\sqrt{5}×\sqrt{1})}{4}

\bf \implies \dfrac{5+1+(2\sqrt{5})}{4}

\bf \implies \dfrac{6+(2\sqrt{5})}{4}

\bf \implies \dfrac{3+(\sqrt{5})}{2} \\

\bf b=\dfrac{\sqrt{5-1}}{\sqrt{5+1}}

\bf \implies \dfrac{\sqrt{5-1}}{\sqrt{5+1}}×\dfrac{\sqrt{5-1}}{\sqrt{5-1}}

\bf \implies \dfrac{\sqrt{5-1}^2}{5-1}

\bf \implies \dfrac{(\sqrt{5})^2+(\sqrt{1})^2-(2×\sqrt{5}×\sqrt{1})}{4}

\bf \implies \dfrac{5+1-(2\sqrt{5})}{4}

\bf \implies \dfrac{6-(2\sqrt{5})}{4}

\bf \implies \dfrac{3-(\sqrt{5})}{2}

\bf putting \:Values \: in  \dfrac{3a^2+5ab+3b^2}{3a^2-5ab+3b^2}

 \begin{gathered}\bf \implies \dfrac{3(\dfrac{3+(\sqrt{5}}{2})^2+5(\dfrac{3+\sqrt{5}}{2})(\dfrac{3-\sqrt{5}}{2})+3(\dfrac{3-\sqrt{5}}{2})^2}{{3(\dfrac{3+\sqrt{5}}{2})^2-5(\dfrac{3+\sqrt{5}}{2})(\dfrac{3-\sqrt{5}}{2})+3(\dfrac{3-\sqrt{5}}{2})^2}\end{gathered}

Similar questions