If a=5-2√6 then find the value of √a-1/√a
Answers
Answered by
97
It bears repeating: you should have applied the well-known following formulas: "Hello", "Please" and "Thanks".
Anyway...
= = = = = = = = = = = = = = = = = =
Yo have
A = 5 + 2√6
= 3 + 2(√3)×(√2) + 2 ←←← Since √(ab)=(√a)(√b)
= (√3)² + 2×(√3)×(√2) × (√2)² ←←← Since a=(√a)²
= (√3 + √2)² ←←← Since x²+2xy+y²=(x+y)²
Thus:
√A = √3 + √2
And:
1/√A = 1/(√3 + √2)
= (√3 – √2) / [(√3 + √2)(√3 – √2)] ←←← Since (1/x)=y/(xy)
= (√3 – √2) / [(√3)² – (√2)²] ←←← Since (x+y)(x–y)=x²–y²
= (√3 – √2) / (3 – 2) ←←← Since (√a)²=a
= (√3 – √2) / 1
= √3 – √2
Thus finally:
√A + 1/√A = (√3 + √2) + (√3 – √2) = 2√3
hope this helps
plz mark it as the brainliest answer
Anyway...
= = = = = = = = = = = = = = = = = =
Yo have
A = 5 + 2√6
= 3 + 2(√3)×(√2) + 2 ←←← Since √(ab)=(√a)(√b)
= (√3)² + 2×(√3)×(√2) × (√2)² ←←← Since a=(√a)²
= (√3 + √2)² ←←← Since x²+2xy+y²=(x+y)²
Thus:
√A = √3 + √2
And:
1/√A = 1/(√3 + √2)
= (√3 – √2) / [(√3 + √2)(√3 – √2)] ←←← Since (1/x)=y/(xy)
= (√3 – √2) / [(√3)² – (√2)²] ←←← Since (x+y)(x–y)=x²–y²
= (√3 – √2) / (3 – 2) ←←← Since (√a)²=a
= (√3 – √2) / 1
= √3 – √2
Thus finally:
√A + 1/√A = (√3 + √2) + (√3 – √2) = 2√3
hope this helps
plz mark it as the brainliest answer
nikitajha400:
No ans is √8
Answered by
60
@
a=5-2√6
1/a=(1/5-2√6)
=>1×(5+2√6)/5-2√6×(5+2√6)
=>5+2√6/25-24
=>5+2√6
_____________
a+1/a=(5-2√6)+(5+2√6)=10
(√a)²+(1/√a)²=10
(√a-1/√a)²=√a²+1/√a²-2
(√a-1/√a)²=10-2
(√a-1/√a)²=8
√a-1/√a=±√8
@:-)
a=5-2√6
1/a=(1/5-2√6)
=>1×(5+2√6)/5-2√6×(5+2√6)
=>5+2√6/25-24
=>5+2√6
_____________
a+1/a=(5-2√6)+(5+2√6)=10
(√a)²+(1/√a)²=10
(√a-1/√a)²=√a²+1/√a²-2
(√a-1/√a)²=10-2
(√a-1/√a)²=8
√a-1/√a=±√8
@:-)
Similar questions
Math,
8 months ago
Hindi,
8 months ago
Environmental Sciences,
8 months ago
English,
1 year ago
Computer Science,
1 year ago