Math, asked by nishi10th, 1 year ago

If A (5,2),B (2,-2) and C (-2,t) are the vertices of a right angled triangle with B=90°,then find the value of t.

Answers

Answered by pikuldash2
189

Answer:

Step-by-step explanation:

HOPE U WILL UNDERSTAND THIS❤

Attachments:
Answered by mysticd
249

Answer:

 \red { Value \: of \: t }\green {= 1}

Step-by-step explanation:

 Let \: A(5,2) = (x_{1},y_{1}),\\B(2,-2) = (x_{2},y_{2}),and \:C(-2,t) = (x_{3},y_{3})\:are \\veritcies \:of \:right\:angled\:triangle

\angle B = 90\degree

 \blue { \underline { By \:using \: distance \: formula:}}

 AB^{2} = ( x_{2}-x_{1})^{2} +  ( y_{2}-y_{1})^{2}\\=(2-5)^{2}+(-2-2)^{2}\\= (-3)^{2}+(-4)^{2}\\= 9 + 16 \\= 25

 BC^{2} = ( x_{3}-x_{2})^{2} +  ( y_{3}-y_{2})^{2}\\=(-2-2)^{2}+(t+2)^{2}\\= (-4)^{2}+(t+2)^{2}\\=  16 + (t+2)^{2}

 CA^{2} = ( x_{3}-x_{1})^{2} +  ( y_{3}-y_{1})^{2}\\=(-2-5)^{2}+(t-2)^{2}\\= (-7)^{2}+(t-2)^{2}\\=  49 + (t-2)^{2}

 \blue { \underline { By \: Phythagorean \: theorem:}}

 CA^{2} = AB^{2} + BC^{2}

 49 + (t-2)^{2} = 25 + 16 + (t+2)^{2}

\implies 49 - 41 = (t+2)^{2} - (t-2)^{2}

 \implies 8 = 4\times t \times 2

 \boxed { \pink {(a+b)^{2} - (a-b)^{2} = 4ab }}

 \implies 8 = 8t

 \implies \frac{8}{8} = t

 \implies t = 1

Therefore.,

 \red { Value \: of \: t }\green {= 1}

•••♪

Similar questions