if A (-5,7),B (-4,-5) ,C (-1,6) and D (4,2) are the vertices of a quadrilateral , find the area of quadrilateral ABCD
Answers
Answered by
12
HELLO DEAR,
A(-5,7), B(-4,-5) , C(-1,6) and D(4,2)
area of triangle ABC= 1/2[(-5)(-5-6) + (-4)(6-7) +(-1)(7+5) ]
=> 1/2[(-5 × -11) + ( -4 × -1) + (-1 × 12)]
=> 1/2[ (55 + 4 - 12]
=> 1/2[59 - 12]
=> 1/2[47]
=> 47/2unit²
area of ∆BCD = 1/2[(-5)(-6 - 2) + (-1) (2 - 7) + (4)(7 - 6)]
=> 1/2[(-5 × -8 ) + (-1 × -5) + (4 × 1)]
=> 1/2[ 40 + 5 + 4]
=> 1/2(49)
=> 49/2unit²
Area of quadrilateral = ara.ABC + areaBCD
=> 47/2 + 49/2
=> (47 + 49)/2
=> (96)/2
=> 48unit²
I HOPE ITS HELP YOU DEAR,
THANKS
A(-5,7), B(-4,-5) , C(-1,6) and D(4,2)
area of triangle ABC= 1/2[(-5)(-5-6) + (-4)(6-7) +(-1)(7+5) ]
=> 1/2[(-5 × -11) + ( -4 × -1) + (-1 × 12)]
=> 1/2[ (55 + 4 - 12]
=> 1/2[59 - 12]
=> 1/2[47]
=> 47/2unit²
area of ∆BCD = 1/2[(-5)(-6 - 2) + (-1) (2 - 7) + (4)(7 - 6)]
=> 1/2[(-5 × -8 ) + (-1 × -5) + (4 × 1)]
=> 1/2[ 40 + 5 + 4]
=> 1/2(49)
=> 49/2unit²
Area of quadrilateral = ara.ABC + areaBCD
=> 47/2 + 49/2
=> (47 + 49)/2
=> (96)/2
=> 48unit²
I HOPE ITS HELP YOU DEAR,
THANKS
Answered by
6
heya..!!!
we know that
area of triangle = 1/2[(x1)(y2 - y3) + (x2)(y3 - y1) + (x3)(y1 - y2)]
A(-5,7), B(-4,-5) , C(-1,6) and D(4,2)
in ∆ ABC
x1 = -5 , x2 = -4 ,x3 = -1
Y1 = 7 , Y2 = -5 , Y3 = 6
area of triangle ABC= 1/2[(-5)(-5-6) + (-4)(6-7) +(-1)(7+5) ]
=> 1/2[(-5 × -11) + ( -4 × -1) + (-1 × 12)]
=> 1/2[ (55 + 4 - 12]
=> 1/2[59 - 12]
=> 1/2[47]
=> 47/2unit²
IN ∆ BCD
X1 = -5 , x2 = -4 , x3 = 4
y1 = 7 , y2 = -5 , y3 = 2
area of ∆BCD = 1/2[(-5)(-6 - 2) + (-1) (2 - 7) + (4)(7 - 6)]
=> 1/2[(-5 × -8 ) + (-1 × -5) + (4 × 1)]
=> 1/2[ 40 + 5 + 4]
=> 1/2(49)
=> 49/2unit²
Area of quadrilateral = area(ABC) + area(BCD)
=> 47/2 + 49/2
=> (47 + 49)/2
=> (96)/2
=> 48unit²
we know that
area of triangle = 1/2[(x1)(y2 - y3) + (x2)(y3 - y1) + (x3)(y1 - y2)]
A(-5,7), B(-4,-5) , C(-1,6) and D(4,2)
in ∆ ABC
x1 = -5 , x2 = -4 ,x3 = -1
Y1 = 7 , Y2 = -5 , Y3 = 6
area of triangle ABC= 1/2[(-5)(-5-6) + (-4)(6-7) +(-1)(7+5) ]
=> 1/2[(-5 × -11) + ( -4 × -1) + (-1 × 12)]
=> 1/2[ (55 + 4 - 12]
=> 1/2[59 - 12]
=> 1/2[47]
=> 47/2unit²
IN ∆ BCD
X1 = -5 , x2 = -4 , x3 = 4
y1 = 7 , y2 = -5 , y3 = 2
area of ∆BCD = 1/2[(-5)(-6 - 2) + (-1) (2 - 7) + (4)(7 - 6)]
=> 1/2[(-5 × -8 ) + (-1 × -5) + (4 × 1)]
=> 1/2[ 40 + 5 + 4]
=> 1/2(49)
=> 49/2unit²
Area of quadrilateral = area(ABC) + area(BCD)
=> 47/2 + 49/2
=> (47 + 49)/2
=> (96)/2
=> 48unit²
Similar questions