Math, asked by ParyashGarg, 1 year ago

if A(-5,7), B(a,0), C(4,b),(1,2) are the vertices of a parallelogram ABCD , find the values of a and b. Hence find the lengths of its sides.

Answers

Answered by ANUROX
3
if A(-5,7), B(a,0), C(4,b),(1,2) are the vertices of a parallelogram ABCD , find the values of a and b. Hence find the lengths of its sides
Attachments:
Answered by amirgraveiens
4

The lengths of its sides are \sqrt{58} and \sqrt{61}.

Step-by-step explanation:

Given:

Parallelogram ABCD

A( -5, 7), B(a, 0), C(4, b), D(1, 2)

Now, Midpoint of AC = Midpoint of BD

(∵ diagonals of a parallelogram bisect each other)

Using Midpoint Formula, we get

The midpoint of the segment joining (x_1,y_1)  and (x_2,y_2) is given by = (\frac{x_1+x_2}{2},\frac{y_1+y_2}{2})

Putting values,

The midpoint of AC = (\frac{-5+4}{2},\frac{7+b}{2} )

                                 =  (\frac{-1}{2},\frac{7+b}{2} )

The midpoint of BD = (\frac{a+1}{2}, \frac{0+2}{2} )                                         = (\frac{a+1}{2}, 1)

Now, \frac{7+b}{2} = 1

⇒ 7 + b =2

⇒ b = 2 - 7

⇒ b = - 5

And \frac{a+1}{2}=\frac{-1}{2}  

⇒ a+1 = -1

⇒ a = -1 - 1

⇒ a = -2

So,  A( -5, 7), B(-2, 0 ), C(4, -5), D(1, 2)

Using Distance Formula, we get

Distance between (x_1, y_1) and (x_2, y_2 ) is given by,

D = \sqrt{(x_2-x_1)^2+(y_2-y_1)^2}

Putting Values,

AB = \sqrt{(-2-(-5))^2+(0-7)^2}

     = \sqrt{(-2+5)^2+(7)^2}

     = \sqrt{(3)^2+(7)^2}

     = \sqrt{9+49}

     = \sqrt{58}

     = CD

AD = \sqrt{(1-(-5))^2+(2-7)^2}

     = \sqrt{(1+5)^2+(-5)^2}

     = \sqrt{(6)^2+(-5)^2}

     = \sqrt{36+25}

     = \sqrt{61}

     = BC

Therefore,

AB = CD = \sqrt{58}, AD = BC = \sqrt{61}

Similar questions