IF a = 6+2 * root 3 , find the value of (a-1/a)
Answers
Answer:
(69 + 25√3) / 12
Solution:
We have ;
a = 6 + 2√3
Thus,
1/a = 1/(6+2√3)
Now,
Rationalising the denominator in RHS , we get ;
=> 1/a = (6 - 2√3) / (6 + 2√3)(6 - 2√3)
=> 1/a = (6 - 2√3) / {6²- (2√3)²}
=> 1/a = (6 - 2√3) / (36 - 12)
=> 1/a = (6 - 2√3) / 24
=> 1/a = 2(3 - √3) / 24
=> 1/a = (3 - √3) / 12
Now,
a - 1/a = 6 + 2√3 - (3 - √3) / 12
= [72 + 24√3 - (3 - √3)] / 12
= (72 + 24√3 - 3 + √3) / 12
= (69 + 25√3) / 12
Hence,
The required value of a + 1/a is :
(69 + 25√3) / 12
Solution:-
A = 6+2√3
1/a = 1/6+2√3
→ = 1/6+2√3 × 6-2√3/6-2√3
→ = (6-2√3)/(6+2√3)(6-2√3)
→ = (6-2√3)/(6²-(2√3)²)
→ = (6-2√3)/(36-4(3))
→ = (6-2√3)/(36-12)
→ = (6-2√3)/24
★a-1/a
→ 6+2√3 - (6-2√3)/24
→ {24(6+2√3) - 6 + 2√3}/24
→ {144+48√3-6+2√3}/24
→ {138+50√3}/24
→ 138/24 + 50√3/24
→ 23/4 + 25√3/12
→ {69+25√3}/12
i hope it helps you.