Math, asked by Gauravmeena8800, 1 year ago

If a=6+2root3, then find the value of a-1/a

Answers

Answered by Arshia29
66
hope this helps .........
Attachments:
Answered by pinquancaro
31

Answer:

a-\frac{1}{a}=\frac{69+25\sqrt3}{12}

Step-by-step explanation:

Given : a=6+2\sqrt3

To find : The value of a-\frac{1}{a} ?

Solution :

a=6+2\sqrt3

First we find \frac{1}{a}

i.e. \frac{1}{a}=\frac{1}{6+2\sqrt3}

Rationalize the denominator,

\frac{1}{a}=\frac{1}{6+2\sqrt3}\times \frac{6-2\sqrt3}{6-2\sqrt3}

\frac{1}{a}=\frac{6-2\sqrt3}{6^2-(2\sqrt3)^2}

\frac{1}{a}=\frac{6-2\sqrt3}{36-12}

\frac{1}{a}=\frac{6-2\sqrt3}{24}

\frac{1}{a}=\frac{3-\sqrt3}{12}

Substitute back in expression,

a-\frac{1}{a}=6+2\sqrt3-\frac{3-\sqrt3}{12}

a-\frac{1}{a}=\frac{12(6+2\sqrt3)-(3-\sqrt3)}{12}

a-\frac{1}{a}=\frac{72+24\sqrt3-3+\sqrt3}{12}

a-\frac{1}{a}=\frac{69+25\sqrt3}{12}

Therefore, a-\frac{1}{a}=\frac{69+25\sqrt3}{12}

Similar questions