Math, asked by santhunas, 1 year ago

If A=(6,-4)B=(-2,2),then find the co-ordinates of "P" such that PA=PB and A,B,P are collinear​

Answers

Answered by ejajpathan1975
0

Answer:

2 is the answer of these questions

Answered by himanshu112449
0

The given

PA=PB

distance of PA = distance of PB

let the point of P = (x,y)

and name of points

X1 =6. , Y1= -4

X2 = X , Y2 = Y

X3 = -2 ,Y3= 2

 \sqrt{ {(x2 - x1)}^{2} +  {(y2 - y1)}^{2}  }  =  \sqrt{ {(x3 - x2)}^{2} +  {(y3 - y2)}^{2}  } \\  {(x2 - x1)}^{2}   +  {(y2 - y1)}^{2}  =  {(x3 - x2)}^{2}  +  {(y3 - y2)}^{2}  \\  {(x - 6)}^{2}  +  {(y  + 4)}^{2}  =  {( - 2 - x)}^{2}  +  {(2 - y)}^{2} \\  {x }^{2}   +  {6}^{2}  - 2 \times 6 \times x  +  {y}^{2}  +  {4}^{2}  + 2 \times 4 \times y =  {2}^{2}  +  {x}^{2}  + 2 \times 2 \times x +  {2}^{2}  +  {y}^{2}  - 2 \times y \times 2 \\ 36 - 12x + 16 + 8y  - 4  - 4x - 4 + 4y =  {x}^{2}  -  {x}^{2}  +  {y}^{2}  -  {y}^{2}  \\  - 16x + 12y + 36 + 8 = 0 \\ 16x - 12y   = 44 \\ 4(4x - 3y) = 44 \\ 4x - 3y =  \frac{44}{4}  \\ 4x - 3y = 11 \:  \: equation \: 1

second type A,B,P are collinear

solve

x1(y2 - y3) + x2(y3 - y1) + x3(y2 - y1) = 0 \\ 6(y - 2) + x(2 - 4) +  ( - 2)(y - 4) = 0 \\ 6y - 12  -  2x  - 2y + 8 = 0 \\ 4y - 2x - 4 = 0 \\ 4y - 2x = 4 \\ 2(2y - x) = 4 \\ 2y - x = 2 \:  \: equation \: 2

do multiple 4 in equation 2

so equation = 8y-4x = 8 equation 3

Add the equation 1 and 3

4x - 3y = 11 \\  - 4x + 8y = 8 \\ add \: the \: equation \\  - 3y + 8y = 11 + 8 \\ 5y = 19 \\ y =  \frac{19}{5} put \: on \: eqution \: 2

2y - x = 2 \\ 2 \times  \frac{19}{5}  - x = 2 \\  \frac{38}{5}  - x = 2 \\  \frac{38}{5}  - 2 = x \\  \frac{38 - 10}{5}  = x \\ x =  \frac{28}{5}

X= 28/5

and

Y = 19/5

points Of P = (28/5,19/5) answer

Similar questions
English, 6 months ago