Math, asked by mohendranathborah123, 2 months ago

if a = 7+4√3
find a + 1 /a​

Answers

Answered by xSoyaibImtiazAhmedx
5

Given:

  • \large\bold{\mathtt{\color{red}{★ a = \:7 \:+ \:4√3}}}

To find :

  • \large\bold{\mathtt{\color{red}{→ \:a \:+\:\frac{1}{a}}}}

Now,

  \large\bold{a +  \frac{1}{a} }

 \large \bold{ =  \frac{ {a}^{2}  + 1}{a} }

 \large  \bold{=  \frac{ {(7 + 4 \sqrt{3} )}^{2}  + 1}{7 + 4 \sqrt{3} } }

  \large\bold{ =  \frac{49 + 56 \sqrt{3} + 16 \times 3 }{7 + 4 \sqrt{3} } }

 \large \bold {=  \frac{49 + 56 \sqrt{3}  + 48}{7  + 4 \sqrt{3} } }

 \large \bold{ =  \frac{97 + 56 \sqrt{3} }{7 + 4 \sqrt{3} } }

{ \underline \frak{ \bold{‡ Now,  \: we  \: will  \:  \: rationalize   \: \: the \:   \: denominator‡}}}

 \large \bold{   :→ \frac{(97 + 56 \sqrt{3})(7 - 4 \sqrt{3} ) }{(7 + 4 \sqrt{3})(7 - 4 \sqrt{3})  } }

 \bold{ =  \frac{97 \times 7 - 97 \times 4 \sqrt{3} + 56 \sqrt{3}  \times 7 - 56 \sqrt{3}  \times 4 \sqrt{3}  }{49 - 16 \times 3} }

 =  \frac{679 - 388 \sqrt{3} + 392 \sqrt{3}   -  672 }{49 - 48}

 \bold{ = 679 - 672 + 392 \sqrt{3}  - 388 \sqrt{3} }

 \large \underbrace  { \color{orange}{\bold{:→ 7 + 4 \sqrt{3} }}}

\Large{\colorbox{orange}{\underline{\underline{♪Answer♪:—\:\:7+4√3} }}}

Similar questions