If a =7-4√3, find √a + 1/√a. Answer is 4
Answers
Answer:
4
Step-by-step explanation:
Find √a:
a = 7 - 4√3
a = (4 + 3) - (2 x 2)√3
a = 4 + 3 - 2(2√3)
a = (2)²+ (√3)² - 2(2√3)
a = (2 - √3)²
√a = 2 - √3
Find 1/√a:
1/√a = 1/(2 - √3)
1/√a = 1/(2 - √3) x (2 + √3)/(2 + √3)
1/√a = (2 + √3)/(4 - 3)
1/√a = (2 + √3)
Find √a + 1/√a:
√a + 1/√a = (2 - √3) + (2 + √3)
√a + 1/√a = 2 - √3 + 2 + √3
√a + 1/√a = 4
Answer: 4
Answer :
The required answer is 4.
Step-by-step explanation :
At first, find √a :
a = 7 - 4 √ 3
⇒ a = 4 + 3 - 4 √ 3
⇒ a = (2)² + (√3)² - 2 × 2 × √3
⇒ a = ( 2 + √3 )²
⇒ √a = √(2 + √3)²
⇒ √a = 2 + √3
Now, find 1 / √a :
√a = 2 + √3
⇒ 1 / √a = 1 / 2 + √3
⇒ 1 / √a = 1 / 2 + √3 × 2 - √3 / 2 - √3
⇒ 1 / √a = 2 - √3 / 2² - √3²
⇒ 1 / √a = 2 - √3 / 4 - 3
⇒ 1 / √a = 2 - √3
Finally, add √a + 1 / √a :
√a + 1 / √a = 2 + √3 + 2 - √3
√a + 1 / √a = 2 + 2
√a + 1 / √a = 4
Hence, the required answer is 4.