Math, asked by friyu2014awe, 1 year ago

if a=7-4√3, find the value of √a+1/√a

Answers

Answered by Anonymous
380
your answer is here ✌
Attachments:
Answered by kingofself
174

The value of \bold{\sqrt{a}+\frac{1}{\sqrt{a}}} is 4

Given:

a=7-4 \sqrt{3}

To find:

The value of \sqrt{a}+\frac{1}{\sqrt{a}}

Solution:

The given value of a is 7-4 \sqrt{3}

And the value of \frac{1}{a} \text { is } 7+4 \sqrt{3}

Then,  

\begin{array}{c}{a+\frac{1}{a}=7-4 \sqrt{3}+7+4 \sqrt{3}} \\ {a+\frac{1}{a}=14}\end{array}

Now to find the value of \sqrt{a}+\frac{1}{\sqrt{a}},

By using the formula of (a+b)^{2}=a^{2}+b^{2}+2 a b

Then, applying the (a+b)^{2} formula to \sqrt{a}+\frac{1}{\sqrt{a}}

We can get,

\begin{array}{c}{\left(\sqrt{a}+\frac{1}{\sqrt{a}}\right)^{2}=(\sqrt{a})^{2}+\left(\frac{1}{\sqrt{a}}\right)^{2}+\left(2 \times \sqrt{a} \times \frac{1}{\sqrt{a}}\right)} \\ {\left(\sqrt{a}+\frac{1}{\sqrt{a}}\right)^{2}=a+\frac{1}{a}+2}\end{array}

Already we know the value of  a+\frac{1}{a} is 14

\begin{array}{c}{\left(\sqrt{a}+\frac{1}{\sqrt{a}}\right)^{2}=14+2} \\ {\left(\sqrt{a}+\frac{1}{\sqrt{a}}\right)^{2}=16}\end{array}

By taking square root for the value of \left(\sqrt{a}+\frac{1}{\sqrt{a}}\right)^{2}, we can get the value of \sqrt{a}+\frac{1}{\sqrt{a}}

\begin{array}{l}{\sqrt{a}+\frac{1}{\sqrt{a}}=\sqrt{16}} \\ {\sqrt{a}+\frac{1}{\sqrt{a}}=4}\end{array}

Then the value of \bold{\sqrt{a}+\frac{1}{\sqrt{a}}} is 4, if the value of a is  7-4 \sqrt{3}.

Similar questions