Math, asked by singhaniaharsh18, 1 year ago

If a=8+3√2, b=1/a. Find a^2+b^2

Answers

Answered by amankumaraman11
0

{ \boxed{ \huge{a = 8 + 3 \sqrt{2}}}} \\  \\ { \boxed{ \huge{b =  \frac{1}{8 + 3 \sqrt{2} } =  \frac{8 - 3 \sqrt{2} }{64 - 18} =  { \red{\frac{8 - 3 \sqrt{2} }{46}  }} }}}

Now,

 { \large{{a}^{2}  +  {b}^{2}  = {(a + b)}^{2} - 2ab  }} \\  \\  =  > { \boxed{ \large{ (8 + 3 \sqrt{2} +  \frac{8 - 3 \sqrt{2} }{46}  )^{2}  - 2(8 + 3 \sqrt{2} )( \frac{8 - 3 \sqrt{2} }{46} )}}} \\  \\ \\   =  > { \boxed{ \large{ {(8 + 3 \sqrt{2} )}^{2}  + 2(8 + 3 \sqrt{2} )( \frac{8 - 3 \sqrt{2} }{46} ) +  (\frac{8 - 3 \sqrt{2} }{46})^{2}  - 2(8 + 3 \sqrt{2} )( \frac{8 - 3 \sqrt{2} }{46} ) }}}  \\  \\  \\  =  > { \boxed{ \large{(64 + 18 + 48 \sqrt{2} ) + ( \frac{64 + 18 - 48 \sqrt{2} }{2116} )}}} \\  \\  \\  =  > { \boxed{ \large{ \frac{135424 + 38088 + 101568 \sqrt{2} + 64 + 48 - 48 \sqrt{2}  }{2116} }}} \\  \\  \\  =  > { \boxed{ \large{ \frac{173512 + 101568 \sqrt{2}  + 112 - 48 \sqrt{2} }{2116} }}} \\  \\ =  >  { \boxed{ \large{ { \red{\frac{173624  + 101520 \sqrt{2} }{2116}}} }}}

Similar questions