Math, asked by ankush4865, 1 year ago

if a=8+3√7 and b=1/8+3√7. show that a square + b square = 254​

Attachments:

Answers

Answered by ihrishi
1

Answer:

Given: \\ a = 8 + 3 \sqrt{7}  \\  \therefore \:  {a}^{2} = (8 + 3 \sqrt{7})^{2} \\  =  {8}^{2}  +  {(3 \sqrt{7)} }^{2}  + 2 \times 8 \times 3 \sqrt{7}    \\  = 64 + 63 + 48 \sqrt{7}  \\   {a}^{2} = 127 + 48 \sqrt{7}.....(1) \\ b =  \frac{1}{8 + 3 \sqrt{7}}  \\  {b}^{2}  =  \frac{1}{(8 + 3 \sqrt{7})^{2}} \\  = \frac{1}{{8}^{2}  +  {(3 \sqrt{7)} }^{2}  + 2 \times 8 \times 3 \sqrt{7} } \\  = \frac{1}{64 + 63 + 48 \sqrt{7} }   \\  {b}^{2}  = \frac{1}{127 + 48 \sqrt{7} } \\  = \frac{1}{127 + 48 \sqrt{7} }  \times  \frac{127  -  48 \sqrt{7}}{127  -  48 \sqrt{7}}   \\  =  \frac{127 - 48 \sqrt{7} }{(127) ^{2}  - (48 \sqrt{7} ) ^{2} } \\ =   \frac{127 - 48 \sqrt{7} }{16129 - 16128}  \\  = \frac{127 - 48 \sqrt{7} }{1}  \\   {b}^{2} = 127 - 48 \sqrt{7} ......(2) \\ adding \: equations \: (1) \: and \: (2) \\ {a}^{2} + {b}^{2} = 127  + 48 \sqrt{7} + 127 - 48 \sqrt{7} \\  = 127 + 127 \\    \therefore \: {a}^{2} + {b}^{2} = 254 \\ thus \: proved.

Similar questions