Math, asked by sujanesh, 1 year ago

if A(a,0),B(-a,0) and angle APB =45° then locus of P is

Answers

Answered by MaheswariS
13

\textbf{Given:}

\text{A(a,0), B(-a,0) and $\angle{APB}=45^{\circ}$}

\textbf{To find:}

\text{Locus of P}

\textbf{Solution:}

\text{Let the moving point be $P(h,k)$}

\text{Slope of AP}=\dfrac{y_2-y_1}{x_2-x_1}

\text{Slope of AP}=\dfrac{k-0}{h-a}

\text{Slope of AP,}\,m_1=\dfrac{k}{h-a}

\text{Slope of BP,}\,m_2=\dfrac{k}{h+a}

\text{Since angle between AP and BP is $45^{\circ}$,}

\implies|\dfrac{m_1-m_2}{1+m_1\,m_2}|=tan\,45^{\circ}

\implies|\dfrac{\frac{k}{h-a}-\frac{k}{h+a}}{1+(\frac{k}{h-a})(\frac{k}{h+a})}|=1

\implies|\dfrac{\frac{k(h+a)-k(h-a)}{(h-a)(h+a)}}{1+\frac{k^2}{h^2-a^2}}|=1

\implies|\dfrac{\frac{kh+ak-kh+ak}{h^2-a^2}}{1+\frac{k^2}{h^2-a^2}}|=1

\implies|\dfrac{\frac{2ak}{h^2-a^2}}{\frac{h^2-a^2+k^2}{h^2-a^2}}|=1

\implies|\dfrac{2ak}{h^2-a^2+k^2}|=1

\implies\dfrac{2ak}{h^2-a^2+k^2}=\pm\,1

\text{case(1):}

\implies\dfrac{2ak}{h^2-a^2+k^2}=1

\implies\,h^2-a^2+k^2=2ak

\implies\,h^2+k^2-2ak-a^2=0

\text{case(2):}

\implies\dfrac{2ak}{h^2-a^2+k^2}=-1

\implies\,h^2-a^2+k^2=-2ak

\implies\,h^2+k^2+2ak-a^2=0

\textbf{Answer:}

\textbf{The locus of P are $\bf\,x^2+y^2-2ay-a^2=0$ and $\bf\,x^2+y^2+2ay-a^2=0$ }

\textbf{Note:}

\text{sometimes the problem can be done by without using modulus}

Similar questions