Math, asked by Anonymous, 1 year ago

if (a-a')^2+(b-b')^2+(c-c')^2=p
 and (ab'-a'b)^2+(bc'-b'c)^2+(ca'-c'a)^2=q
then the perpendicular distance of the line 
ax+by+cz=1,a'x+b'y+c'z=1 is


yashucool: hey madan give me some hint to solve this question
yashucool: 11th
yashucool: okk
Anonymous: madan how did u get (p/q)^0.5
Anonymous: finally got it

Answers

Answered by Anonymous
8
the plane having the line is
ax+by+cz +k(a'x+b'y+c'z)=1+k
the distance from origin
d= \frac{|1+m|}{ \sqrt{(a+ma')^{2} +(b+mb')^{2} +(c+mc')^{2} } }
d^2= \alpha = \frac{1+2m+m^{2} }{(a'^2+b^2+c'^2)m^2+(2aa'+2bb'+2cc')m+(a^2+b^2+c^2)}
take (a'^2+b^2+c'^2)=A 
(2aa'+2bb'+2cc')=B 
(a^2+b^2+c^2)=C
 \alpha = \frac{1+2m+m^2}{Am^2+Bm+C}
(A \alpha -1)m^2+(B\alpha -2)m+(C \alpha -1)=0
the dicriminat is greater than zero
u can see that
 \frac{4(A+C-B)}{(4AC-B^2)} = \frac{p}{q}
0 \leq  \alpha  \leq  \frac{p}{q} \\ d= \sqrt{ \frac{p}{q} }


Anonymous: this maximum distance by the way
Similar questions