Math, asked by tusharking13, 7 months ago

If A={a,b}, find the number of elements in power set of AxA *
1 point
4
16
2
36​

Answers

Answered by MaheswariS
0

\underline{\textsf{Given:}}

\mathsf{A=\{a,b\}}

\underline{\textsf{To find:}}

\textsf{The number of elements in power set of A x A}

\underline{\textsf{Solution:}}

\textsf{Concept used:}

\textsf{If}\;\mathsf{n(A)=m,}\;\textsf{then}\;\mathsf{n[P(A)]=2^m}

\textsf{Consider,}

\mathsf{A=\{a,b\}}

\textsf{Then,}\;\mathsf{n(A)=2}

\textsf{But}\;\mathsf{n(A{\times}A)=[n(A)]^2}

\implies\mathsf{n(A{\times}A)=2^2=4}

\textsf{Now,}

\mathsf{n[P(A{\times}A)]=2^{n(A{\times}A)}}

\mathsf{n[P(A{\times}A)]=2^4=16}

\implies\boxed{\mathsf{n[P(A{\times}A)]=16}}

Similar questions