Math, asked by chiruvikkymaddala, 4 months ago

if A={ a+ib c+id -c+id a-id } ,a2+b2+c2+d2=1 then find inverse of A in matrix chapter exercise 3e​

Answers

Answered by MaheswariS
3

\textbf{Given:}

\mathsf{A=\left(\begin{array}{cc}a+ib&c+id\\-c+id&a-ib\end{array}\right)\;\;a^2+b^2+c^2+d^2=1}

\textbf{To find:}

\textsf{Inverse of A}

\textbf{Solution:}

\textsf{Consider,}

\mathsf{|A|=\left|\begin{array}{cc}a+ib&c+id\\-c+id&a-ib\end{array}\right|}

\mathsf{|A|=(a+id)(a-ib)-(id-c)(id+c)}

\mathsf{|A|=a^2+b^2-(-d^2-c^2)}

\mathsf{|A|=a^2+b^2+c^2+d^2}

\mathsf{|A|=1\;{\neq}\;0}

\implies\mathsf{A^{-1}\;exists}

\mathsf{adjA=\left(\begin{array}{cc}a-ib&-c-id\\c-id&a+ib\end{array}\right)}

\mathsf{Now,}

\mathsf{A^{-1}=\dfrac{1}{|A|}adjA}

\mathsf{A^{-1}=\dfrac{1}{1}\left(\begin{array}{cc}a-ib&-c-id\\c-id&a+ib\end{array}\right)}

\implies\mathsf{A^{-1}=\left(\begin{array}{cc}a-ib&-c-id\\c-id&a+ib\end{array}\right)}

\textbf{Find more:}

1.If A is a non-singular square matrix of order 3 such that A^2 = 3A, then

value of det.A is

(A) -3

(B) 3IA|

(C) 9

D) 27​

https://brainly.in/question/16038984

2.A is a square matrix with |A|=4 then find the value of |A. (adjA)|

https://brainly.in/question/10368771

3.If A is a matrix such that A^3=I , then show that A is invertible

https://brainly.in/question/9894201

4.If A and B are invertible matrices of same order such that |(AB)-1 | =8 .if |A|=2 then| B | is

https://brainly.in/question/17628908

Answered by genius1947
5

\huge\underline \texttt\blue{Given:-}

\mathbf{A=\left(\begin{array}{cc}a+ib&c+id\\-c+id&a-ib\end{array}\right)\;\;a^2+b^2+c^2+d^2=1}

\huge\underline\texttt\orange{To find:-}

\textbf{Inverse of A}

\huge\underline\texttt\red{Solution:-}

\textbf{Consider,}

\mathbf{|A|=\left|\begin{array}{cc}a+ib&c+id\\-c+id&a-ib\end{array}\right|}

\mathbf{|A|=(a+id)(a-ib)-(id-c)(id+c)}

\mathbf{|A|=a^2+b^2-(-d^2-c^2)}

\mathbf{|A|=a^2+b^2+c^2+d^2}

\mathbf{|A|=1\;{\neq}\;0}

\implies\mathbf{A^{-1}\;exists}

\mathbf{adjA=\left(\begin{array}{cc}a-ib&-c-id\\c-id&a+ib\end{array}\right)}

\mathbf{Now,}

\mathbf{A^{-1}=\dfrac{1}{|A|}adjA}

\mathbf{A^{-1}=\dfrac{1}{1}\left(\begin{array}{cc}a-ib&-c-id\\c-id&a+ib\end{array}\right)}

\implies\mathbf{A^{-1}=\left(\begin{array}{cc}a-ib&-c-id\\c-id&a+ib\end{array}\right)}

________________________

Hope it helps !!

Happy Studies !!

#BeBrainly.

Scroll from right to left to see the whole solution.

Similar questions