Math, asked by Lakiah, 11 months ago

if a &ß are zeroes of x^2+x-1 then find a^2×ß+a×ß^2​

Answers

Answered by Anonymous
7

Given \:  \: Question \:  \: Is \:  \: \\  \\f(x) =  x {}^{2}   + x - 1 \\  \alpha  \:  \:  \: and \:  \:  \beta  \:  \:  \: are \: its \: two \: zeroes \:  \\  \\ Answer \:  \\  \\  \alpha  +  \beta  =  \frac{ - 1}{1}  \:  \:  \: and \:  \:  \:  \:  \alpha  \beta  =  \frac{ - 1}{ 1}  \\  \\  \alpha  {}^{2}  \beta  +  \beta  {}^{2}  \alpha  =  \alpha  \beta ( \alpha  +  \beta ) \\  \\  \alpha  { }^{2}  \beta  +  \beta  {}^{2}  \alpha  =  - 1( - 1) \\  \\  \alpha  { }^{2}  \beta  +  \beta  {}^{2}  \alpha  = 1 \\  \\ Therefore \:  \:  \:  \alpha  {}^{2}  \beta  +  \beta  {}^{2}  \alpha  = 1 \\  \\ Note \:  \:  \:  \\  \\ for \: a \: general \: quadratic \: polynomial \:  \\ say \:  \:  \: p(x) = ax {}^{2}  + bx + c \\  \\  \alpha  +  \beta  =  \frac{ - b}{ a}  \:  \:  \:  \:  \:  \: and \:  \:  \:  \:  \:  \alpha  \beta  =  \frac{c}{a}

Similar questions