Math, asked by ekasbabbar, 9 months ago

If a & b are rational numbers and
 \frac{ \sqrt{11} -  \sqrt{7}  }{ \sqrt{11}  +  \sqrt{7} }  = a \:  - b \sqrt{77}
Then find a & b​

Answers

Answered by Slogman
1

√11-√7/√11+√7 = a-b√77

Rationalisation of denominator (L.H.S.):

We get, √11-√7/√11+√7×√11-√7/√11-√7

=> (√11-√7)²/(√11-√7)(√11+√7)

Using identity: (a+b)(a-b) = a²-b² and (a-b)² = a²+b²-2ab

=> (11+7-2√77)/(√11)²-(√7)²

=> 18-2√77/11-7

=> 18-2√77/4

=> 9-√77/2 = L.H.S.

Now, 9-√77/2 = a-b√77

=> a = 9/2 and b = 1/2

Hence, The value of a = 9/2 and b = 1/2.

Hope it helps you.

Please mark me as the brainliest.

Answered by dangerousqueen01
6

 \frac{ \sqrt{11} -  \sqrt{7} }{ \sqrt{11} +  \sqrt{7} }  = a - b \sqrt{77}  \\  =>\frac{ \sqrt{11} -  \sqrt{7} }{ \sqrt{11} +  \sqrt{7} } \times \frac{ \sqrt{11} -  \sqrt{7} }{ \sqrt{11}  -   \sqrt{7} }   = a - b \sqrt{77} \\  =>  \frac{ ({ \sqrt{11}) }^{2} - 2 \times  \sqrt{11}  \times  \sqrt{7}  +  ({ \sqrt{7} )}^{2} }{ ({ \sqrt{11} )}^{2} - ( { \sqrt{7} )}^{2} }  = a - b \sqrt{77}  \\  =>  \frac{11 - 2 \sqrt{77} + 7 }{11 - 7}  = a - b \sqrt{77}  \\  =>  \frac{18 - 2 \sqrt{77} }{4}  = a - b \sqrt{77}  \\  =>  \frac{2(9 -  \sqrt{77} )}{2(2)}  = a - b \sqrt{77} \\   =>  \frac{9 -  \sqrt{77} }{2}  = a - b \sqrt{77}

On comparing both sides, we get,

a =  \frac{9}{2}  = 4 \frac{1}{2}

and,

b \sqrt{77}  =  \frac{ \sqrt{77} }{2} \\  =>  b =  \frac{1}{2}

Similar questions