If a & B are the zeroes of the quadratic polynomial p(x) = 3x - 5x+7, then find the
Svalue
of alpha ^2+beeta^2
Answers
Answered by
3
Answer:
Given expression,3x^2+5x+7
let it be equal to zero
3x^2+5x+7=0
here, a=3;b=5;c=7
The value of x is,
x=[-b±√b^2–4ac]/2a
x=[-5±√25–84]/6
x=[-5±√-59]/6
x=[-5± i √59]/6………………………………………….where i is the imaginary number{i=√-1}
x=[-5+i√59]/6 , x=[-5-i√59]/6
therefore; α=[-5+i√59]/6 ; β=[-5-i√59]/6
α^3=[-125 -i 59√59+i15√59(i√59–5)]\6……………………………….{i^3=-i}
Therefore,(α^3)+1=[-119 -i 59√59+i15√59(i√59–5)]\6
β^3=[-125 -i 59√59+i15√59(i√59+5)]\6
Similar questions