Math, asked by veduipar3, 1 year ago

If a and ß are the roots of the equation x2 - 4x + 1 = 0, find (i) alpha square + Beta square (2) alpha/beta+beta/alpha​

Answers

Answered by SparklingBoy
70

Answer:

Using formula that

product of roots of an equation ax^2 +bx+c=0

=c/a

and some of its roots is -b/a.

As roots

roots of

 {x}^{2}  - 4x + 1=0

are α and β

αβ (product of roots ) =1

α+β (sum of roots )= 4

Now

i)

 { \alpha }^{2}  +  { \beta }^{2}

= {( \alpha   + \beta )}^{2}  - 2 \alpha  \beta

put values α+β and αβ

 {2}^{2}  - 2 \\ 4 - 2 \\  = \boxed{ \boxed{2}}   \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \boxed{ \boxed{answer}}

Now

ii)

 \frac{ \alpha }{ \beta }  +  \frac{ \beta }{ \alpha }  \\  =  \frac{ { \alpha }^{2}  +  { \beta }^{2} } { \alpha  \beta }  \\

put \: values \: of \:  { \alpha }^{2}  +  { \beta }^{2}  \\ and \:  \alpha  \beta

 \implies \:  \frac{ { \alpha } ^{2} +  { \beta }^{2}  }{ \alpha  \beta }  =  \frac{2}{1}  \\  = \boxed{ \boxed{2}} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \boxed{ \boxed{answer}} \:


Anonymous: Awesome ; )
Answered by ram5556
60

Answer:

The roots of the equation = x^2 - 4x +1= 0.

= The sum of Roots of equation = 4.

= The product of Roots of equation = 1.

(i). = a^2 + B^2

= (a + B^2) - 2aB

The value a + B and aB:

= 2^2 - 2

= 4 - 2

= 2

(ii). = a. + B

B. a

= a^2 + B^2

aB

The value of a^2 + B^2 and aB:

=. a^2 + B^2 = 2

aB. 1

= 2

1

= 2


Anonymous: Awesome ; )
Similar questions