Math, asked by 45910, 1 month ago

If A and B are (-2,-2) and (2,-4) respectively,find the coordinates of P such that AP = 3/7 AB and p P lies on the line segment AB.

For moderator
Brainly ⭐
Other best users

Answers

Answered by Anonymous
80

Question :-

If A and B are (-2,-2) and (2,-4) respectively,find the coordinates of P such that AP = 3/7 AB and p P lies on the line segment AB.

Given that :-

  • A and B are (-2,-2) and (2,-4)
  • { \rm{AP  =  \frac{3}{7}  \: AB}}

To Find :-

  • Coordinates of P ?

Solution :-

• Let the co - ordinates of P be (x,y)

 \dashrightarrow{ \rm{AP  =  \frac{3}{7}  \: AB -  -  -  - (1)Eq.}}

 \dashrightarrow{ \rm{AB = AP + PB }}

\dashrightarrow{ \rm{AB =  \frac{3}{7} AB + PB }}

\dashrightarrow{ \rm{PB =  AB  -  \frac{3}{7}  \: AB }}

 \dashrightarrow{ \rm{PB =  \frac{7 AB - 3 AB}{7} }}

 \dashrightarrow{ \rm{PB =  \frac{4}{7} AB -  -  -  - (2)Eq.}}

{ \rm{Divide \:  (1) \:  and \:  (2)  \: Eq.}}

 \dashrightarrow { \rm{\frac{AP}{PB}  =  \frac{ \frac{3}{ \cancel7}  \:  \: \cancel{AB}}{ \frac{4}{ \cancel7} \:  \: \cancel{AB}} }}

\dashrightarrow { \rm{\frac{AP}{PB}  = \frac{3}{4}}}

• Hence, the point P divides AB in the ratio of 3:4.

• Finding coordinate of p :-

• Let, { \rm{m_{1} = 3, \:  m_{2} = 4}}

{ \rm{x_{1} =  - 2, \:  x_{2} = 2}}

{ \rm{y_{1} =  - 2, \:  y_{2} =  - 4}}

Using Section Formula : i.e,

 { \boxed{ \pink{ \rm{x = \frac{m_{1}x_{2}+ m_{2}x_{1}}{m_{1} + m_{2} } , {y = \frac{m_{1}y_{2}+ m_{2}y_{1}}{m_{1} + m_{2} }}}}}}

 {\dashrightarrow{ \rm{ x =  \frac{3(2) + 4( - 2)}{3 + 4} , \: y =  \frac{3( - 4) + 4( - 2)}{3 + 4}}}}

{\dashrightarrow{ \rm{ x =   \frac{6 - 8}{7}  , \: y =  \frac{ - 12 - 8}{7}}}}

{\dashrightarrow{ \rm{ x =   \frac{  - 2}{7}  , \: y =  \frac{ - 20}{7}}}}

Hence, the co-ordinates of P are P(x,y) = { \rm{P =  \frac{ - 2}{7}  , \: \frac{ - 20}{7}} }

Attachments:
Similar questions