If A and B are finite sets and how can u define symmetric difference of sets Aand B
Answers
Answered by
2
The symmetric difference of two sets A & B is defined as the set
(A-B) U (B-A)
The symmetric
difference of A & B is denoted by A sign of triangle B
Thus A triangle B = ( A - B ) U ( B- A)
I hope you understand
(A-B) U (B-A)
The symmetric
difference of A & B is denoted by A sign of triangle B
Thus A triangle B = ( A - B ) U ( B- A)
I hope you understand
Answered by
0
If A and B are any two sets then their symmetric difference is represented as AΔB and can be given by (A–B)U(B–A) or (AUB) – (A∩B).
In the figure (in the attachment) the shaded region is the symmetric difference of A and B
In the figure (in the attachment) the shaded region is the symmetric difference of A and B
Attachments:
Similar questions