Math, asked by naitik9b, 1 month ago

if a and b are given zeros of x ² - 6x + k find the value of k if 3a + 2b = 20

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\:a \: and \: b \: are \: zeroes \: of \:  polynomial \: {x}^{2} - 6x + k

We know that,

\boxed{\red{\sf Sum\ of\ the\ zeroes=\frac{-coefficient\ of\ x}{coefficient\ of\ x^{2}}}}

\bf\implies \:a + b =  - \dfrac{( - 6)}{1} = 6 -  - (1)

Also,

\boxed{\red{\sf Product\ of\ the\ zeroes=\frac{Constant}{coefficient\ of\ x^{2}}}}

\bf\implies \: ab= \dfrac{k}{1} =  k -  - (2)

Now,

Given that,

\rm :\longmapsto\:3a + 2b = 20

\rm :\longmapsto\:a + 2a + 2b = 20

\rm :\longmapsto\:a + 2(a + b) = 20

\rm :\longmapsto\:a + 2 \times 6 = 20 \:  \:  \:  \:  \: \:  \:   \{using \: (1) \}

\rm :\longmapsto\:a + 12 = 20

\bf\implies \:a = 8 -  -  - (3)

On substituting the value of a in equation (1), we get

\rm :\longmapsto\:8 + b = 6

\bf\implies \:b =  - 2 -  -  - (4)

Now,

On substituting the values of a and b in equation (2), we get

\rm :\longmapsto\:k = 8 \times ( - 2)

\bf\implies \:k =  - 16

Additional Information :-

\boxed{ \sf \:  { \alpha }^{2} +  { \beta }^{2} =  {( \alpha +  \beta )}^{2} - 2 \alpha  \beta }

\boxed{ \sf \:  { \alpha }^{3} +  { \beta }^{3} =  {( \alpha +  \beta )}^{3} - 3 \alpha  \beta( \alpha  +  \beta ) }

\boxed{ \sf \:  \alpha  -  \beta  =  \sqrt{ {( \alpha  +  \beta) }^{2}  - 4 \alpha  \beta } }

Similar questions