Math, asked by swastikojha, 1 year ago

If a and b are natural numbers satisfying a3 – b3 = ab + 61, then find the value of a + b.

Answers

Answered by Anonymous
0

Answer:

your answer is here !

Step-by-step explanation:

If a − b is divisible by 3, then a − b = 3k, for some integer k 

(a − b)² = (3k)² 

a² − 2ab + b² = 9k² 

a³ − b³ = (a−b) (a² + ab + b²) 

 = (a−b) (a² − 2ab + b² + 3ab) 

 = 3k (9k + 3ab) 

 = 3k * 3 (3k + ab) 

 = 9 k(3k+ab) 

Since k(3k+ab) is an integer, then 9k(3k+ab) is divisible by 9 

follow me !

Answered by shriraam02007
0

Answer:

Step-by-step explanation:

a^3 - b^3 = ( a-b) ( a^2 + ab + b^2)        =     ab + 61

(a-b )^3 = a^3 - b^3 - 3ab(a-b)    = ab + 61

putting value for a^3 - b^3

= ab + 61 - 3ab ( a-b)

-2ab + 61  = a-b

a = 5 , b=6

pls mark me the brainliest , rate and say thanks

Similar questions