Math, asked by pinalpatel8499, 1 year ago

If a and b are rational no's and 2+√3÷2-√3=a+b√3 find the value of a square and bsquare

Answers

Answered by BrainlyQueen01
31

Hey there !



_____________________________



Given :



 \bold{ \frac{2 + \sqrt{3} }{2 - \sqrt{3} } = a + b \sqrt{3} }



To find the value of a and b, we need to simply LHS by rationalising it's denominator.



we have ;



 \bold{ \frac{2 + \sqrt{3} }{2 - \sqrt{3} } = a + b \sqrt{3} } \\ \\ \\ \bold{\frac{2 + \sqrt{3} }{2 - \sqrt{3} } \times\frac{2 + \sqrt{3} }{2 + \sqrt{3} }} \\ \\ \\ \bold{ \frac{(2 + \sqrt{3}) {}^{2} }{(2) {}^{2} - ( \sqrt{3}) {}^{2} } } \\ \\ \\ \bold{ \frac{4 + 4 \sqrt{3} + 3}{4 - 3} } \\ \\ \\ \bold{ \frac{7 + 4 \sqrt{3} }{1} } \\ \\ \\ \bold{ 7 + 4 \sqrt{3} }



Now, on comparing LHS with RHS, we get ;



 \bold{7 + 4 \sqrt{3} = a + b \sqrt{3} }



Therefore,



 \bold{a = 7 \: \: and \: \: b = 4}



Now, coming to the question :



\bold{a {}^{2} + b{}^{2}}



=> (7)² + (4)²



=> 49 + 16



=> 65


_____________________________



Thanks for the question !


Mylo2145: Gr8 one di!
Anonymous: Great answer!! :)
BrainlyQueen01: Thanks mylo :)
BrainlyQueen01: Thanks dev Sir ^_^
BrainlyQueen01: Thanks :)
BrainlyQueen01: Thanks :)
BrainlyVirat: Great answer shreya :)
BrainlyQueen01: Thanks ^_^
Answered by Mylo2145
24
 \mathfrak{ \underline{ \underline{ \huge{ \star \: heya \: buddy \star}}}}

Given:

 \frac{2 + \sqrt{3} }{2 - \sqrt{3} } = a + b \sqrt{3}

To solve this question, we need to rationalise LHS first. So, here we go!

 \frac{2 + \sqrt{3} }{2 - \sqrt{3} } \times \frac{2 + \sqrt{3} }{2 + \sqrt{3} } \\ = \frac{ {(2 + \sqrt{3}) }^{2} }{4 - 3} \\ = \frac{4 + 4 \sqrt{3} + 3}{1} \\ = 7 + 4 \sqrt{3}

Now, comparing the LHS and RHS,

7 + 4 \sqrt{3} = a + b \sqrt{3}

As visible now,

a = 7

b = 4

Thus,

 {a} ^{2} + {b} ^{2} \\<br />= {7} ^{2} +{4} ^{2} \\<br />= 49 + 16 \\<br />= 65

✌️ {Be } ^{Brainly } ✌️

Anonymous: Great answer!! :)
Mylo2145: thnku... it means a lot sir! ✌️♥️
BrainlyQueen01: Find value of a² + b²
Mylo2145: done...!
RohitSaketi: :allo_love: :siddhi:
BrainlyVirat: Keep rocking
BrainlyVirat: Great answer ;)
Mylo2145: thnku so much my gr8 bros! ✌️❤️
BrainlyVirat: ♥️☺️☺️☺️;-)
Similar questions