Math, asked by tanreetkaurdhillon, 1 month ago

if a and b are rational number and 2+√3 / 2-√3 = a+b√3 find the value a and b??​

Answers

Answered by hukam0685
1

Step-by-step explanation:

Given:

 \frac{2 +  \sqrt{3} }{2 -  \sqrt{3} } = a + b \sqrt{3}   \\  \\

To find: Value of a and b?

Solution:

Step 1: Rationalise the LHS

 \frac{2 +  \sqrt{3} }{2 -  \sqrt{3} } \times  \frac{2 +  \sqrt{3} }{2  +   \sqrt{3} } = a + b \sqrt{3}  \\

Step 2: Multiply and solve by applying identity

( {x + y)}^{2}  =  {x}^{2}  +  {y}^{2}  + 2xy \\ \\  (x + y)(x - y) =  {x}^{2}  -  {y}^{2}  \\  \\

 \frac{( {2 +  \sqrt{3}) }^{2} }{( {2)}^{2} - ( { \sqrt{3}) }^{2}  }  = a + b \sqrt{3}  \\  \\  \frac{4 + 3 + 4 \sqrt{3} }{4 - 3}  = a + b \sqrt{3}  \\  \\  \frac{7 + 4 \sqrt{3} }{1}  =  a + b \sqrt{3} \\

Step 3: Compare LHS and RHS

7 + 4 \sqrt{3}  = a + b \sqrt{3}  \\  \\ a = 7 \\  \\ b = 4 \\  \\

Final answer:

a = 7 \\  \\ b = 4 \\

Hope it helps you.

To learn more on brainly:

5+2√3/7+4√3=a-b√3 find the value of a and b of the following

https://brainly.in/question/2547620

Similar questions