Math, asked by kishoredhakshi, 8 months ago

If a and b are rational numbers and 4+3 roor 5/4-3root5=a+b root 5 find the value of a and b

Answers

Answered by Vamprixussa
42

Given

\dfrac{4+3\sqrt{5} }{4-3\sqrt{5} } = a+b\sqrt{5}

LHS

= \dfrac{4+3\sqrt{5} }{4-3\sqrt{5} }

= \dfrac{4+3\sqrt{5} }{4-3\sqrt{5} } \times  \dfrac{4+3\sqrt{5} }{4+3\sqrt{5} }

= \dfrac{(4+3\sqrt{5})^{2}  }{(4)^{2} -(3\sqrt{5})^{2}  }

= \dfrac{16+24\sqrt{5}+45 }{16-45 }

= \dfrac{61+24\sqrt{5} }{-29 }

= \dfrac{-61}{29}+\dfrac{-24\sqrt{5} }{29}

\boxed{\boxed{\bold{\implies a  = \dfrac{-61}{29}}}}}}

\boxed{\boxed{\bold{\implies b =\dfrac{-24\sqrt{5} }{29}}}}}}}}}

                                                     

Similar questions