Math, asked by falak8463, 9 months ago

.if A and B are rational numbers and
2  \sqrt{5}  +  \sqrt{3}  \div 2 \sqrt{5}  -  \sqrt{3}    + 2 \sqrt{5} - 3 \div 2 \sqrt{5}   + 3 = a +  \sqrt{15} b

find the values of a and b ​

Answers

Answered by RvChaudharY50
186

Correct Question :-

[(2√5 + √3) / (2√5 - √3)] + [(2√5 - √3) / (2√5 + √3)] = a + √15b

To Find :-

  • value of a & b ?

Solution :-

Lets First Rationalize The first Part :-

[(2√5 + √3) / (2√5 - √3)]

Multiply & Divide by (25 + 3) we get,

[(2√5 + √3) / (2√5 - √3)] * [ (2√5 + √3) / (2√5 + √3) ]

Numerator Become (a + b)(a+b) = (a + b)² & Denominator Becomes (a + b)(a - b) = - .

So,

[ (2√5 + √3)² ] / [ (2√5)² - (√3)² ]

Using (a + b)² = + + 2ab in Numerator,

[ (20 + 3 + 4√15) / (20 - 3) ]

→ (23 + 4√15) / 17 ----------- Equation (1)

___________________

Rationalize Second Part Now,

[(2√5 - √3) / (2√5 + √3)]

Multiply & Divide by (25 - 3)

[ (2√5 - √3)² / {(2√5)² - (√3)²} ]

→ [ (20 + 3 - 4√15) / 17 ]

→ (23 - 4√15) / 17 ----------- Equation (2)

___________________

Adding Equation (1) & (2) Now, we get,

[(23 + 4√15) / 17] + [(23 - 4√15) / 17] = a + √15b

→ [ (23 + 23 + 4√15 - 4√15) / 17 ] = a + √15b

→ (46/17) = a + √15b

Comparing we get,

a = (46/17) .

→ b = 0 .

Answered by AdorableMe
160

The question is somehow wrong. The correct question is:-

[(2√5 + √3) / (2√5 - √3)] + [(2√5 - √3) / (2√5 + √3)] = a + √15b

Given:-

  • 'a' and 'b' are rational numbers.
  • [(2√5 + √3) / (2√5 - √3)] + [(2√5 - √3) / (2√5 + √3)] = a + √15b

To find:-

The values of 'a' and 'b'.

Solution:-

\frac{(2\sqrt{5}  + \sqrt{3} ) }{(2\sqrt{5}  - \sqrt{3} )}   +\frac{ (2\sqrt{5} - \sqrt{3} ) }{(2\sqrt{5}  + \sqrt{3} )}   = a + \sqrt{15} b

\frac{(2\sqrt{5}  + \sqrt{3} )(2\sqrt{5}  + \sqrt{3} ) }{(2\sqrt{5}  - \sqrt{3})(2\sqrt{5}  + \sqrt{3} )}+\frac{(2\sqrt{5} - \sqrt{3} )(2\sqrt{5} - \sqrt{3} )}{(2\sqrt{5}  + \sqrt{3} )(2\sqrt{5} - \sqrt{3} )}   = a + \sqrt{15} b

\frac{(2\sqrt{5} + \sqrt{3} )^2}{2\sqrt{5}^2-\sqrt{3}^2}+\frac{(2\sqrt{5} - \sqrt{3} )^2}{2\sqrt{5}^2-\sqrt{3}^2 }=a+\sqrt{15}b

\frac{(2\sqrt{5})^2+\sqrt{3}^2+2*\sqrt{3}*2\sqrt{5}  }{20-3}+\frac{(2\sqrt{5})^2 - 2*2\sqrt{5}*\sqrt{3}+(\sqrt{3})^2}{20-3}=a+\sqrt{15}b

\frac{20+3+4\sqrt{15} }{17}+\frac{20-4\sqrt{15}+3}{17}=a+\sqrt{15}b

\frac{23+4\sqrt{15} }{17}+\frac{23-4\sqrt{15}}{17}=a+\sqrt{15}b

\frac{23+4\sqrt{15}+23-4\sqrt{15}}{17} = a+15\sqrt{b}

\frac{46}{17} = a+15\sqrt{b}

here, 46/17 can be written as 46/17 + 0.

Comparing LHS and RHS, we get:

\boxed{a = \frac{46}{17} }

15√b = 0

⇒√b = 0

\boxed{b = 0}

Similar questions