.if A and B are rational numbers and
find the values of a and b
Answers
Correct Question :-
[(2√5 + √3) / (2√5 - √3)] + [(2√5 - √3) / (2√5 + √3)] = a + √15b
To Find :-
- value of a & b ?
Solution :-
Lets First Rationalize The first Part :-
→ [(2√5 + √3) / (2√5 - √3)]
Multiply & Divide by (2√5 + √3) we get,
→ [(2√5 + √3) / (2√5 - √3)] * [ (2√5 + √3) / (2√5 + √3) ]
Numerator Become (a + b)(a+b) = (a + b)² & Denominator Becomes (a + b)(a - b) = a² - b² .
So,
→ [ (2√5 + √3)² ] / [ (2√5)² - (√3)² ]
Using (a + b)² = a² + b² + 2ab in Numerator,
→ [ (20 + 3 + 4√15) / (20 - 3) ]
→ (23 + 4√15) / 17 ----------- Equation (1)
___________________
Rationalize Second Part Now,
→ [(2√5 - √3) / (2√5 + √3)]
Multiply & Divide by (2√5 - √3)
→ [ (2√5 - √3)² / {(2√5)² - (√3)²} ]
→ [ (20 + 3 - 4√15) / 17 ]
→ (23 - 4√15) / 17 ----------- Equation (2)
___________________
Adding Equation (1) & (2) Now, we get,
→ [(23 + 4√15) / 17] + [(23 - 4√15) / 17] = a + √15b
→ [ (23 + 23 + 4√15 - 4√15) / 17 ] = a + √15b
→ (46/17) = a + √15b
Comparing we get,
→ a = (46/17) .
→ b = 0 .
The question is somehow wrong. The correct question is:-
[(2√5 + √3) / (2√5 - √3)] + [(2√5 - √3) / (2√5 + √3)] = a + √15b
Given:-
- 'a' and 'b' are rational numbers.
- [(2√5 + √3) / (2√5 - √3)] + [(2√5 - √3) / (2√5 + √3)] = a + √15b
To find:-
The values of 'a' and 'b'.
Solution:-
here, 46/17 can be written as 46/17 + 0.
Comparing LHS and RHS, we get:
15√b = 0
⇒√b = 0
⇒