Math, asked by 7212vinodkumar, 7 months ago

if a and b are roots of the quadratic equation x^2-x+1=0, the write the value of a^2+b^2​

Answers

Answered by Anonymous
1

Answer:

a²+b²= -1

Step-by-step explanation:

if a and b are roots of the quadratic equation

x²-x+1=0

Then a+b=-(-1/1)=1

ab=1/1=1

Now a+b=1

squaring we get

(a+b)²=1

a²+b²+2ab=1

a²+b² +2*1=1

a²+b²=1-2=-1

Answered by udayagrawal49
1

Answer:

a^{2}+b^{2} = -1

Step-by-step explanation:

Given, x^{2}-x+1 = 0

D = b^{2}-4ac

D = 1-4 = -3

x = \frac{-b+\sqrt{D}}{2a} or x = \frac{-b-\sqrt{D}}{2a}

x = \frac{1+\sqrt{-3}}{2} or x = \frac{1-\sqrt{-3}}{2}

x = \frac{1+\sqrt{3}i}{2} or x = \frac{1-\sqrt{3}i}{2}

a = \frac{1}{2}+\frac{\sqrt{3}i}{2} and b = \frac{1}{2}-\frac{\sqrt{3}i}{2}

a^{2} = (\frac{1}{2}+\frac{\sqrt{3}i}{2})^{2} and b^{2} = (\frac{1}{2}-\frac{\sqrt{3}i}{2})^{2}

a^{2} = -\frac{1}{2}+\frac{\sqrt{3}i}{2} and b^{2} = -\frac{1}{2}-\frac{\sqrt{3}i}{2}

a^{2}+b^{2} = -\frac{1}{2}+\frac{\sqrt{3}i}{2} -\frac{1}{2}-\frac{\sqrt{3}i}{2}

a^{2}+b^{2} = -\frac{2}{2}

a^{2}+b^{2} = -1

Similar questions