Math, asked by shubham6198, 1 year ago

if a and b are the roots of 4x^2+3x+7=0 then the value of 1/a+1/b is

Answers

Answered by TheAishtonsageAlvie
80
Hi there

Given :-

4 {x}^{2}  + 3x + 7 = 0
Where


 \alpha  = 4 \\  \\  \beta  = 3 \\  \\  \gamma  = 7 \\ and \: also \: \\  \\  a + b \:  \:  \:  =  \frac{ -  \beta }{ \alpha }  \\ \\   =  > a  + b \:  \:  =   \frac{ - 3}{4}  \\  \\ and \: ab \:  =  \frac{ \gamma }{ \alpha }  =  \frac{7}{4}
so the value of
 \frac{1}{a}  +  \frac{1}{b}  =  \frac{a + b}{ab}  \\  \\  =  >  \frac{1}{a}  +  \frac{1}{b} \:  =   \frac{ - 3}{4}  \div  \frac{7}{4}  \\  \\  =   \frac{ - 3}{4}  \times  \frac{4}{7}  \\  \\  =   \frac{ - 3}{7}
Hope this helps ya☺

TheAishtonsageAlvie: :)
TheAishtonsageAlvie: do mark brainliest please :)
Answered by VaibhavSR
0

Answer: \frac{-3}{7}

Step-by-step explanation:

  • The roots of quadratic equation 4x^{2} +3x+7=0 must be calculated.
  • a=4,b=3 and c=7.
  • D=\sqrt{b^{2}-4ac }

          =\sqrt{3^{2}-4*4*7 }

          =\sqrt{9-112}

          =\sqrt{-103}

          =\sqrt{103} \ i       [∵ i^{2}=-1]

  • So,the roots of the equation are

            \frac{-b+D}{2a} and  \frac{-b-D}{2a}

       ⇒\frac{-3+\sqrt{103} i }{8} and \frac{-3-\sqrt{103}i }{8}

  • Now,\frac{1}{a}+\frac{1}{b}

             ⇒ \frac{8 }{-3+\sqrt{103} i}+\frac{8 }{-3-\sqrt{103} i}

             ⇒\frac{-24-8\sqrt{103}i+(-24+8\sqrt{103}i )  }{(-3)^{2} -( \sqrt{103} i)^{2} }

             ⇒\frac{-24-8\sqrt{103}i-24+8\sqrt{103}i )  }{9 +{103}  }

             ⇒\frac{-48   }{112  }

             ⇒\frac{-3}{7}

  • Hence,the required sum of the reciprocal of roots is \frac{-3}{7}.

#SPJ2

Similar questions