If A and B are the two non-empty sets , then {x ∶ x ∈A but x ∉B }
Answers
Hello Mate!!!!
Step-by-step explanation:
Let M = (A ∩ B)' and N = A' U B'
Let M = (A ∩ B)' and N = A' U B'Let x be an arbitrary element of M then x ∈ M ⇒ x ∈ (A ∩ B)'
Let M = (A ∩ B)' and N = A' U B'Let x be an arbitrary element of M then x ∈ M ⇒ x ∈ (A ∩ B)'⇒ x ∉ (A ∩ B)
Let M = (A ∩ B)' and N = A' U B'Let x be an arbitrary element of M then x ∈ M ⇒ x ∈ (A ∩ B)'⇒ x ∉ (A ∩ B)⇒ x ∉ A or x ∉ B
Let M = (A ∩ B)' and N = A' U B'Let x be an arbitrary element of M then x ∈ M ⇒ x ∈ (A ∩ B)'⇒ x ∉ (A ∩ B)⇒ x ∉ A or x ∉ B⇒ x ∈ A' or x ∈ B'
Let M = (A ∩ B)' and N = A' U B'Let x be an arbitrary element of M then x ∈ M ⇒ x ∈ (A ∩ B)'⇒ x ∉ (A ∩ B)⇒ x ∉ A or x ∉ B⇒ x ∈ A' or x ∈ B'⇒ x ∈ A' U B'
Let M = (A ∩ B)' and N = A' U B'Let x be an arbitrary element of M then x ∈ M ⇒ x ∈ (A ∩ B)'⇒ x ∉ (A ∩ B)⇒ x ∉ A or x ∉ B⇒ x ∈ A' or x ∈ B'⇒ x ∈ A' U B'⇒ x ∈ N
Let M = (A ∩ B)' and N = A' U B'Let x be an arbitrary element of M then x ∈ M ⇒ x ∈ (A ∩ B)'⇒ x ∉ (A ∩ B)⇒ x ∉ A or x ∉ B⇒ x ∈ A' or x ∈ B'⇒ x ∈ A' U B'⇒ x ∈ NTherefore, M ⊂ N …………….. (i)
Let M = (A ∩ B)' and N = A' U B'Let x be an arbitrary element of M then x ∈ M ⇒ x ∈ (A ∩ B)'⇒ x ∉ (A ∩ B)⇒ x ∉ A or x ∉ B⇒ x ∈ A' or x ∈ B'⇒ x ∈ A' U B'⇒ x ∈ NTherefore, M ⊂ N …………….. (i)Again, let y be an arbitrary element of N then y ∈ N ⇒ y ∈ A' U B'
Let M = (A ∩ B)' and N = A' U B'Let x be an arbitrary element of M then x ∈ M ⇒ x ∈ (A ∩ B)'⇒ x ∉ (A ∩ B)⇒ x ∉ A or x ∉ B⇒ x ∈ A' or x ∈ B'⇒ x ∈ A' U B'⇒ x ∈ NTherefore, M ⊂ N …………….. (i)Again, let y be an arbitrary element of N then y ∈ N ⇒ y ∈ A' U B'⇒ y ∈ A' or y ∈ B'
Let M = (A ∩ B)' and N = A' U B'Let x be an arbitrary element of M then x ∈ M ⇒ x ∈ (A ∩ B)'⇒ x ∉ (A ∩ B)⇒ x ∉ A or x ∉ B⇒ x ∈ A' or x ∈ B'⇒ x ∈ A' U B'⇒ x ∈ NTherefore, M ⊂ N …………….. (i)Again, let y be an arbitrary element of N then y ∈ N ⇒ y ∈ A' U B'⇒ y ∈ A' or y ∈ B'⇒ y ∉ A or y ∉ B
Let M = (A ∩ B)' and N = A' U B'Let x be an arbitrary element of M then x ∈ M ⇒ x ∈ (A ∩ B)'⇒ x ∉ (A ∩ B)⇒ x ∉ A or x ∉ B⇒ x ∈ A' or x ∈ B'⇒ x ∈ A' U B'⇒ x ∈ NTherefore, M ⊂ N …………….. (i)Again, let y be an arbitrary element of N then y ∈ N ⇒ y ∈ A' U B'⇒ y ∈ A' or y ∈ B'⇒ y ∉ A or y ∉ B⇒ y ∉ (A ∩ B)
Let M = (A ∩ B)' and N = A' U B'Let x be an arbitrary element of M then x ∈ M ⇒ x ∈ (A ∩ B)'⇒ x ∉ (A ∩ B)⇒ x ∉ A or x ∉ B⇒ x ∈ A' or x ∈ B'⇒ x ∈ A' U B'⇒ x ∈ NTherefore, M ⊂ N …………….. (i)Again, let y be an arbitrary element of N then y ∈ N ⇒ y ∈ A' U B'⇒ y ∈ A' or y ∈ B'⇒ y ∉ A or y ∉ B⇒ y ∉ (A ∩ B)⇒ y ∈ (A ∩ B)'
Let M = (A ∩ B)' and N = A' U B'Let x be an arbitrary element of M then x ∈ M ⇒ x ∈ (A ∩ B)'⇒ x ∉ (A ∩ B)⇒ x ∉ A or x ∉ B⇒ x ∈ A' or x ∈ B'⇒ x ∈ A' U B'⇒ x ∈ NTherefore, M ⊂ N …………….. (i)Again, let y be an arbitrary element of N then y ∈ N ⇒ y ∈ A' U B'⇒ y ∈ A' or y ∈ B'⇒ y ∉ A or y ∉ B⇒ y ∉ (A ∩ B)⇒ y ∈ (A ∩ B)'⇒ y ∈ M
Let M = (A ∩ B)' and N = A' U B'Let x be an arbitrary element of M then x ∈ M ⇒ x ∈ (A ∩ B)'⇒ x ∉ (A ∩ B)⇒ x ∉ A or x ∉ B⇒ x ∈ A' or x ∈ B'⇒ x ∈ A' U B'⇒ x ∈ NTherefore, M ⊂ N …………….. (i)Again, let y be an arbitrary element of N then y ∈ N ⇒ y ∈ A' U B'⇒ y ∈ A' or y ∈ B'⇒ y ∉ A or y ∉ B⇒ y ∉ (A ∩ B)⇒ y ∈ (A ∩ B)'⇒ y ∈ MTherefore, N ⊂ M …………….. (ii)
Let M = (A ∩ B)' and N = A' U B'Let x be an arbitrary element of M then x ∈ M ⇒ x ∈ (A ∩ B)'⇒ x ∉ (A ∩ B)⇒ x ∉ A or x ∉ B⇒ x ∈ A' or x ∈ B'⇒ x ∈ A' U B'⇒ x ∈ NTherefore, M ⊂ N …………….. (i)Again, let y be an arbitrary element of N then y ∈ N ⇒ y ∈ A' U B'⇒ y ∈ A' or y ∈ B'⇒ y ∉ A or y ∉ B⇒ y ∉ (A ∩ B)⇒ y ∈ (A ∩ B)'⇒ y ∈ MTherefore, N ⊂ M …………….. (ii)Now combine (i) and (ii) we get; M = N i.e. (A ∩ B)' = A' U B'
Please Mark Me As Brainiest!!!! ❣️❣️
Step-by-step explanation:
the set will be A-b... the condition is given...
Elements lies in set A not in B.
hope it helps..