Math, asked by azeemskh15, 11 months ago

if a and b are the zeroes of equation 2x^2+4x+5 find the value of a^2+b^2​

Answers

Answered by Sharad001
56

Question :-

 \rm if \:  a \: and \: b \: are \: the \: zeros \: of \: equation \:  \\  \rm 2 {x}^{2}  + 4x + 5 \: then \: find \: the \: value \: of \:  \\ \rm  {a}^{2}  +  {b}^{2} .

Answer :-

\mapsto  \boxed{\rm  {a}^{2}  +  {b}^{2}  =  - 1 \: } \:

To Find :-

 \mapsto \rm  {a}^{2}  +  {b}^{2}

Used Formula :-

 \to \rm {(a + b)}^{2}  =  {a}^{2}  +  {b}^{2}  + 2ab \\

Solution :-

According to the question,

 \rm a \: and \: b \: are \: the \: zeros \: of \: equation \:  \\  \rm 2 {x}^{2}  + 4x + 5 \: \:  \\ \bf therefore \\  \\  \because \star \rm sum \: of \: zeros =  \frac{ - coefficient \: of \: x}{coefficient \: of \:  {x}^{2} }  \\  \\  \mapsto \boxed{ \rm a + b =  \frac{ - 4}{2}  = -  2} \:  \:  \:  \: .....eq.(1) \\  \\ \bf and \:  \\  \because \star  \rm product \: of \: zero =  \frac{ constant \: term}{coefficient}  \\  \\  \mapsto \boxed{ \rm \: ab =  \frac{5}{2} } \:  \:  \:  \: ....eq.(2) \\  \\ \sf hence \\  \\  \mapsto \rm {(a + b)}^{2}  =  {a}^{2}  +  {b}^{2}  + 2ab \\  \\ \mapsto \rm  {a}^{2}  +  {b}^{2}  =  {(a + b)}^{2}  - 2ab \\  \\  \rm \: from \: eq.(1) \: and \: eq.(2) \\  \\  \mapsto \rm {a}^{2}  +  {b}^{2}  =  {( - 2)}^{2}  - 2 \times  \frac{5}{2}  \\  \\  \mapsto \rm  {a}^{2}  +  {b}^{2}  = 4 - 5 \\  \\  \mapsto  \boxed{\rm  {a}^{2}  +  {b}^{2}  =  - 1 \: }

Similar questions