Math, asked by Rana44701, 1 year ago

if a and b are the zeroes of quadratic polynomial ax2+bx+c then evaluate a-b

Answers

Answered by BEJOICE
67

since \:  \alpha  \: and \:  \beta  \: are \: the \: roots \\  \alpha  +  \beta  =  \frac{ - b}{a}  \: and \:  \alpha  \beta  =  \frac{c}{a}  \\ using \: the \: identity \\  {( \alpha  +  \beta )}^{2}  -  {( \alpha   -  \beta )}^{2}  = 4 \alpha  \beta  \\  {( \alpha  -  \beta )}^{2}  =  {( \frac{ - b}{a} )}^{2}  - 4 \times  \frac{c}{a}  \\  =  \frac{ {b}^{2}  - 4ac}{ {a}^{2} }  \\ therefore \\  \alpha  -  \beta  =  \frac{ \sqrt{ {b}^{2} - 4ac } }{a}
Answered by DevendraLal
17

If p and q are the zeroes of quadratic polynomial ax²+bx+c then evaluate p-q.

(this is the correct form of the question.)

Given:

p and q are the zeroes of quadratic polynomial ax²+bx+c.

To Find:

The value of p-q.

Solution:

1) If p and q are the zeros of the polynomial the there is a relation between the zeros and the coefficient of the quadratic polynomial.

2) Sum of the roots = p+q= −b/a = −(coefficient of x) / (coefficient of x²)

Product of the toots = pq = c/a = (coefficient of x) / (coefficient of x²)

3) To find p-q we have to find the square of the first expression.

  • (p+q)²= (−b/a)²                                                          
  • p² + q² + 2pq = b²/a²
  • p² + q² + 2pq - 4pq = b²/a² - 4pq (Subtract 4pq form both side)
  • p² + q² - 2pq = b²/a² - 4c/a
  • (p-q)² = (b² - 4ac) / a²
  • (p-q) = √[(b² - 4ac) / a²]
  • (p-q) = √(b² - 4ac) / a

The value of  (p-q) = √(b² - 4ac) / a

                                     

Similar questions