If a and b are the zeroes of the polynomial 2x²+5x+k and satisfy a²+b²+ab = 17/4 find the value of k
Answers
Answered by
2
Answer:
4
Step-by-step explanation:
a, b are the zeroes of the polynomial 2x² + 5k + k
Comparing 2x² + 5x + k with Ax² + Bx + C we get,
- A = 2
- B = 5
- C = k
Sum of zeroes = a + b = - B / A = - 5 / 2
Product of zeroes = ab = C / A = k / 2
Given :
a² + b² + ab = 17/4
Adding ab on both sides
⇒ a² + b² + ab + ab = 17/4 + ab
Substituting ab = k / 2
⇒ a² + b² + 2ab = 17/4 + k/2
Using algebraic identity a² + b² + 2ab = ( a + b )²
⇒ ( a + b )² = ( 17 + 2k ) / 4
⇒ ( - 5 / 2 )² = ( 17 + 2k ) / 4
⇒ 25 / 4 = ( 17 + 2k ) / 4
⇒ 25 = 17 + 2k
⇒ 25 - 17 = 2k
⇒ 8 = 2k
⇒ k = 8 / 2 = 4
Therefore the value of k is 4.
Similar questions