Math, asked by poonamyadu1, 1 year ago

If a and B are the zeroes of the polynomial 3x²+2x-6,then find the value of (1) a-B (2) a²-B² (3) a³+B³.


Aviralsingh: Hiii

Answers

Answered by Robin0071
0
Solution:-

given by equation:-

3x²+2x-6

by formula

 \frac{ - b( +  - ) \sqrt{ {b}^{2}  - 4ac} }{2a}  \\  \frac{ - 2( +  - ) \sqrt{4 - 4 \times 3 \times ( - 6)} }{2 \times 3}  \\  \frac{ - 2( +  - ) \sqrt{4   + 72} }{6}  \\  \frac{ - 2( +  - )2 \sqrt{19} }{6}  \\  \frac{ - 1( +  - ) \sqrt{19} }{3}  \\ a =  \frac{ - 1 +  \sqrt{19} }{3}  \\ b =   \frac{ - 1 -  \sqrt{19} }{3}  \\  \\ 1 \\( a - b) =  \frac{ - 1 +  \sqrt{19} }{3}  -  \frac{ - 1 -  \sqrt{19} }{3}  \\  \frac{ - 1 +  \sqrt{19}  + 1 +  \sqrt{19} }{3}  \\ (a - b) =  \frac{2 \sqrt{19} }{3}  \\  \\
2.
 {a}^{2}  -  {b}^{2}  =   { (\frac{ - 1 +  \sqrt{19} }{3} )}^{2}  -   {( \frac{ - 1 -  \sqrt{19} }{3} )}^{2}  \\  \frac{1 + 19 - 2 \sqrt{19}  - 1 - 19 - 2 \sqrt{19} }{9}  \\ ( {a}^{2}  -  {b}^{2}  ) = \frac{ - 4 \sqrt{19} }{9}
3.
 {a}^{3}  +  {b}^{3}  =  {(  \frac{ - 1 +  \sqrt{19} }{3} )}^{3}  +  {( \frac{ - 1 -  \sqrt{19} }{3} )}^{3}  \\  \frac{ - 1 + 19 \sqrt{19}  - 3 \sqrt{19}( - 1 +  \sqrt{19} ) - 1 - 19 \sqrt{19} + 3 \sqrt{19} ( - 1 -  \sqrt{19}  )  }{9}  \\(  {a}^{3}  +  {b}^{3} ) =  \frac{ - 2}{9}  ans\\ i \: hope \: its \: help \:



Similar questions