Math, asked by meowbegam, 11 months ago

If a and b are the zeros of polynomial 6x²-(k+1)-7x such that one zero is 11/6 more than the other, find the value of k.

Answers

Answered by MaheswariS
1

\textbf{Given: a and b are zeros of the polynomial}\;6x^2-7x-(k+1)

\text{Then, }

\text{Sum of the zeros=}\;a+b=\frac{7}{6} ......(1)

\text{Product of the zeros=}\;ab=\frac{-(k+1)}{6}

\text{Also, }\;a=\frac{11}{6}+b ......(2)

\text{Using (2) in (1), we get}

\frac{11}{6}+b+b=\frac{7}{6}

\implies\;2b=\frac{7}{6}-\frac{11}{6}

\implies\;2b=-\frac{4}{6}

\implies\;b=\frac{-2}{6}

\implies\boxed{\bf\;b=\frac{-1}{3}}

\text{(2)}\implies\;a=\frac{11}{6}-\frac{1}{3}

\implies\;a=\frac{11-2}{6}

\implies\;a=\frac{9}{6}

\implies\boxed{\bf\;a=\frac{3}{2}}

\text{consider,}

ab=\frac{-(k+1)}{6}

\implies\,(\frac{3}{2})(\frac{-1}{3})=\frac{-(k+1)}{6}

\implies\,\frac{-1}{2}=\frac{-(k+1)}{6}

\implies\,1=\frac{k+1}{3}

\implies\,k+1=3

\implies\boxed{\bf\,k=2}

Find more:

Obtain other zeroes of the polynomial

f(x) = 2x4 + 3x3 - 5x2 - 9x - 3

if two of its zeroes are √3 and - √3.​

https://brainly.in/question/15922200

Similar questions