Math, asked by srinusdsv, 10 months ago

If a and b are then Zeroes of the 5x^2+2x+3 then a^3 + b^3

Answers

Answered by Anonymous
1

\large{\underline{\bf{\green{Given:-}}}}

p(x) = 5x² + 2x + 3

\large{\underline{\bf{\green{To\:Find:-}}}}

✰we need to find the value of α³ + β³

\huge{\underline{\bf{\red{Solution:-}}}}

  • p(x) = 5x² + 2x + 3

fractorising by middle term splitting :-

\mapsto   \sf\:5x^2+2x+3

\mapsto   \sf\:5x^2+5x-3x+3

\mapsto   \sf\:5x(x+1)-3(x+1)

\mapsto   \sf\:(5x-3)(x+1)

\mapsto   \sf\:x=\frac{3}{5}\:or\:\:x= -1

Now,

  • Let α = 3/5
  • and β = -1

Now finding value of α³ + β³

we know that,

  • a ³ + b³ = (a+b)(a² + b² - ab)

Then,

value of α³ + β³ :-

\mapsto   \sf\:[\frac{3}{5}+(-1)][(\frac{3}{5})^2+(-1)^2-(\frac{3}{5}\times(-1)]\\\\

\mapsto   \sf\: (\frac{3 - 5}{5} )( \frac{9}{25} + 1 +  \frac{3}{5} ) \\  \\\mapsto   \sf\:( \frac{ - 2}{5} )( \frac{9 + 25 + 15}{25} ) \\  \\ \mapsto   \sf\: \frac{ - 2}{5}  ( \frac{49}{25}) \\  \\   \mapsto   \sf\: \frac{ - 98}{125}

Hence ,

The Value of α³ + β³ = -98/125

━━━━━━━━━━━━━━━━━━━━━━━━━

Answered by BrainlyPopularman
2

Question :

If a and b are then Zeroes of the polynomial 5x² + 2x + 3 = 0 then a³ + b³ = ?

ANSWER :

  \\   \to \: \:  \:   \:   \:  \: {  \boxed { \bold{ {a}^{3}  +  {b}^{3}  =  {  \frac{82}{125}}} }} \\

EXPLANATION :

GIVEN :

A quadratic equation 5x² + 2x + 3 = 0 which have two roots a and b.

TO FIND :

Value of a³ + b³ = ?

SOLUTION :

▪︎ If a quadratic equation ax² + bx + c = 0 then –

  \\ \:  \:  \:  . \:  \: { \bold{Sum \:  \: of \:  \: roots \:  \:  =  -  \dfrac{b}{a} }} \\

  \\ \:  \:  \:  . \:  \: { \bold{Product \:  \: of \:  \: roots \:  \:  =    \dfrac{c}{a} }} \\

▪︎ Here –

  \\   \: \:  \:   \:  . \:  \: { \bold{a =5 }} \\

  \\   \: \:  \:   \:  . \:  \: { \bold{b =2 }} \\

  \\   \: \:  \:   \:  . \:  \: { \bold{c =3 }} \\

• So that –

  \\ \:  \:  \:  . \:  \: { \bold{Sum \:  \: of \:  \: roots \:  \:   = a + b =  -  \dfrac{2}{5} }} \\

  \\ \:  \:  \:  . \:  \: { \bold{Product \:  \: of \:  \: roots \:  \:  = a.b  =   \dfrac{3}{5} }} \\

▪︎ Now let's find (a³ + b³)

• We know that –

  \\   \implies \:  \:   \:   \:  \: { \bold{ {(a + b)}^{3} =  {a}^{ 3}  +  {b}^{3}   + 3ab(a + b)}} \\

• So that –

  \\   \implies \:  \:   \:   \:  \: { \bold{ {a}^{3}  +  {b}^{3}  =  {(a + b)}^{3}  -  3ab(a + b)}} \\

• Now put the values –

  \\   \implies \:  \:   \:   \:  \: { \bold{ {a}^{3}  +  {b}^{3}  =  {( -  \frac{2}{5} )}^{3}  -  3( \frac{3}{5} )( -  \frac{2}{5} )}} \\

  \\   \implies \:  \:   \:   \:  \: { \bold{ {a}^{3}  +  {b}^{3}  =  {-  \frac{8}{125}}  +  \frac{18}{25} }} \\

  \\   \implies \:  \:   \:   \:  \: {  \boxed { \bold{ {a}^{3}  +  {b}^{3}  =  {  \frac{82}{125}}} }} \\

Similar questions