Math, asked by rshrusoutuoguof, 6 months ago

If ∠A and ∠B are two adjacent angles of a parallelogram. If ∠A = 60°, then ∠B = ?

Explanation needed!​

Answers

Answered by Anonymous
15

 \huge \sf {\orange {\underline {\red{\underline{Answer :-}}}}}

 \sf\large\pink{Given⟹}

ABCD is a parallelogram and  \tt ∠A=60°

 \sf\large\blue{Solution⟹}

We know that opposites angles of a parallelogram are equal.

Therefore,

 {\sf{\boxed{∠A=∠C=60°}}}

 {\sf {\underline{\boxed{Formula \to ∠A+∠B=180°}}}}

 \sf\implies 60°  +∠B=180°

 \sf\implies{ ∠B=120°}

 {\bold{\sf{\implies{\blue{ ∠B=∠D=120°}}}}} (opposite angles of parallelogram)

{\huge{\underline{\small{\mathbb{\pink{HOPE\:HELPS\:UH :)}}}}}}

Answered by VinCus
37

\rule{220}{3}

{ \huge{ \underline{ \underline{ \frak{\red{required \: Answer:}}}}}}

◇To Prove:

\rm\angle\: B\:?

\rule{220}{3}

Given:

 \rm \angle \: A = 60 \degree

 \rm \angle \: A \: and \:  \angle \: B \: are \: adjacent \: angle

\rule{220}{3}

Solution:

 \rm \angle \: A \:  =  \angle \: C (opposite \: angle \: of \: parrlelogram)

 \rm \angle \: B  \: +  \angle \: C  = 180 \degree

 \rm \angle \: B \:  + 60 \degree = 180 \degree

 \rm \angle \: B \:  = 120 \degree

\rule{220}{3}

Similar questions