Math, asked by poorvim2005, 9 months ago

If a and b are two zeroes are quadratic polynomial 2x² - 3x 7. The value of a³ + b³ is?

Answers

Answered by mysticd
2

 Given \: 'a' \: and \: 'b' \: are \:two\: zeroes

 of\: Quadratic \: polynomial \: 2x^{2}-3x+7

 i) Sum \: of \: zeroes = \frac{- Coefficient \: of\:x^{2}}{ Coefficient \: of \: x }

 = \frac{ -(-3)}{2}

 = \frac{3}{2} \: --(1)

 ii) Product \: of \: zeroes = \frac{Constant \:term}{ Coefficient \: of \: x }

 = \frac{ 7}{2} \: ---(2)

 \red{ Value \:of \: a^{3} + b^{3} }

 = ( a + b )^{3} - 3ab (a+b)

 = \Big( \frac{3}{2}\Big)^{3} - 3 \times\frac{7}{2} \times  \frac{3}{2}

 = \frac{27}{8} - \frac{63}{4}

 = \frac{ 27 - 126}{8}

 = \frac{-99}{8}

Therefore.,

 \red{ Value \:of \: a^{3} + b^{3} } \green { =\frac{-99}{8}}

•••♪

Similar questions