Math, asked by ak3828151, 10 months ago

If a and b are zeroes of the quadratic polynomial 2x²+3x+-6, then find the value of : a²+b²

Answers

Answered by Anonymous
1

Answer:-

\sf{The \ value \ of \ a^{2}+b^{2} \ is \ \frac{33}{4}.}

Given:

  • \sf{The \ given \ quadratic \ polynomial \ is}
  • \sf{2x^{2}+3x-6}

  • \sf{Zeroes \ of \ the \ polynomial \ are \ a \ and \ b.}

To find:

\sf{The \ value \ of \ a^{2}+b^{2}}

Solution:

\sf{The \ given \ quadratic \ polynomial \ is}

\sf{2x^{2}+3x-6}

\sf{Here, \ a=2, \ b=3 \ and \ c=-6}

\sf{Sum \ of \ zeroes=\frac{-b}{a}}

\sf{\therefore{a+b=\frac{-3}{2}...(1)}}

\sf{Product \ of \ zeroes=\frac{c}{a}}

\sf{\therefore{ab=-3...(2)}}

\sf{According \ to \ the \ identity.}

\boxed{\sf{a^{2}+b^{2}=(a+b)^{2}-2ab}}

\sf{...from \ (1) \ and \ (2)}

\sf{a^{2}+b^{2}=(\frac{-3}{2})^{2}-2(-3)}

\sf{\therefore{a^{2}+b^{2}=\frac{9}{4}+6}}

\sf{\therefore{a^{2}+b^{2}=\frac{9+24}{4}}}

\sf{\therefore{a^{2}+b^{2}=\frac{33}{4}}}

\sf\purple{\tt{\therefore{The \ value \ of \ a^{2}+b^{2} \ is \ \frac{33}{4}.}}}

Similar questions