Math, asked by 09755, 9 months ago

if a and b r rational no.s and 7-4 √3/7+ 4 √3 = a+c√ 3, find the values of a and b

Answers

Answered by MisterIncredible
32

Given :-

 \sf \dfrac{7 - 4 \sqrt{3} }{7 + 4 \sqrt{3} }  = a + b \sqrt{3}

Required to find :-

  • Values of " a " and " b " ?

Solution :-

Given information :-

 \tt  \dfrac{7 - 4 \sqrt{3} }{7 + 4 \sqrt{3} }  = a + b \sqrt{3}

we need to find the values of " a " and " b " .

Consider the LHS part ;

 \rm \dfrac{7 - 4 \sqrt{3} }{7 + 4 \sqrt{3} }

we need to rationalize the denominator .

Rationalising factor of 7 + 43 = 7 - 43

Multiply the both numerator and denominator with the Rationalising factor

 \tt \dfrac{7 - 4 \sqrt{3} }{7 + 4 \sqrt{3} }  \times  \dfrac{7 - 4 \sqrt{3} }{7 - 4 \sqrt{3} }

Here we need to use some algebraic identities .

They are ;

  • 1. ( x - y ) ( x - y ) = ( x - y )²

  • 2. ( x + y ) ( x - y ) = -

  • 3. ( x - y )² = + - 2xy

Using 1st and 2nd identities we get ;

 \dfrac{(7 - 4 \sqrt{3} {)}^{2}  }{(7 {)}^{2} - (4 \sqrt{3}  {)}^{2}  }

Using the 3rd identity expand the numerator ;

 \dfrac{(7 {)}^{2} + (4 \sqrt{3}  {)}^{2} - 2(7)(4 \sqrt{3})   }{49 - 16 \times 3}

 \dfrac{49  + 16 \times 3 - \: 56\sqrt{3}  }{49 - 48}

 \dfrac{49 + 48 - 56 \sqrt{3} }{1}

 \dfrac{97 - 56 \sqrt{3} }{1}

 \implies  97 - 56 \sqrt{3}

Equal the LHS side and RHS side

 \rm 97 - 56 \sqrt{3}  = a + b \sqrt{3}

 \implies \rm 97 + ( - 56 \sqrt{3} ) = a + b \sqrt{3}

From the above we can conclude that ;

The LHS is in the form of RHS

Hence,

➾ Value of a is 97

➾ Value of b is - 56

Answered by yash0025
6

 \frac{7 - 4 \sqrt{3} }{7 + 4 \sqrt{3} }  \\  =  \frac{7 - 4 \sqrt{3} }{7 + 4 \sqrt{3} } \times   \frac{7 - 4 \sqrt{3} }{7 - 4 \sqrt{3} }  \\ ( {7 - 4 \sqrt{3} )}^{2} \div  {7}^{2}   -  {4 \sqrt{3} }^{2}  \\  \frac{49 + 48 - 56 \sqrt{3} }{49 - 48}  \\ 97 - 56 \sqrt{3}

so, a=97 ,b=-56

Similar questions